Advertisement

On-line and dynamic algorithms for shortest path problems

  • Hristo N. Djidjev
  • Grammati E. Pantziou
  • Christos D. Zaroliagis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 900)

Abstract

We describe algorithms for finding shortest paths and distances in a planar digraph which exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. Our data structures can be updated after any such change in only polylogarithmic time, while a single-pair query is answered in sublinear time. We also describe the first parallel algorithms for solving the dynamic version of the shortest path problem.

Keywords

Short Path Planar Graph Short Path Problem Dynamic Algorithm Edge Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ausiello, G.F. Italiano, A.M. Spaccamela, U. Nanni, “Incremental algorithms for minimal length paths”, J. of Algorithms, 12 (1991), pp. 615–638.Google Scholar
  2. 2.
    H. Bondlaender, “Dynamic Algorithms for Graphs with Treewidth 2”, Proc. 19th WG'93, LNCS 790, pp. 112–124, Springer-Verlag, 1994.Google Scholar
  3. 3.
    M. Carroll and B. Ryder, “Incremental Data Flow Analysis via Dominator and Attribute Grammars”, Proc. 15th Ann. ACM POPL, 1988.Google Scholar
  4. 4.
    E. Cohen, “Efficient Parallel Shortest-paths in Digraphs with a Separator Decomposition”, Proc. 5th ACM SPAA, 1993, pp. 57–67.Google Scholar
  5. 5.
    H. Djidjev, “A Linear Algorithm for Partitioning Graphs of Fixed Genus”, SERDICA, Vol. 11, 1985, pp. 369–387.Google Scholar
  6. 6.
    H. Djidjev, G. Pantziou and C. Zaroliagis, “Computing Shortest Paths and Distances in Planar Graphs”, Proc. 18th ICALP'91, LNCS 510, pp. 327–339, Springer-Verlag.Google Scholar
  7. 7.
    H. Djidjev, G. Pantziou and C. Zaroliagis, “On-line and Dynamic Algorithms for Shortest Path Problems”, Tech. Rep. MPI-I-94-114, Max-Planck-Institut für Informatik, April 1994.Google Scholar
  8. 8.
    S. Even and H. Gazit, “Updating distances in dynamic graphs”, Methods of Operations Research, Vol. 49, 1985, pp. 371–387.Google Scholar
  9. 9.
    D. Eppstein, Z. Galil, G. Italiano and A. Nissenzweig, “Sparsification — A Technique for Speeding Up Dynamic Graph Algorithms”, Proc. 33rd FOCS, 1992, pp. 60–69.Google Scholar
  10. 10.
    E. Feuerstein and A.M. Spaccamela, “Dynamic Algorithms for Shortest Paths in Planar Graphs”, Theor. Computer Science, 116 (1993), pp. 359–371.Google Scholar
  11. 11.
    G.N. Frederickson, “Fast algorithms for shortest paths in planar graphs, with applications”, SIAM J. on Computing, 16 (1987), pp. 1004–1022.Google Scholar
  12. 12.
    G.N. Frederickson, “Using Cellular Graph Embeddings in Solving All Pairs Shortest Path Problems”, Proc. 30th IEEE Symp. on FOCS, 1989, pp. 448–453.Google Scholar
  13. 13.
    G.N. Frederickson “Planar Graph Decomposition and All Pairs Shortest Paths”, J. ACM, Vol. 38, No.1, January 1991, pp. 162–204.Google Scholar
  14. 14.
    G.N. Frederickson, “Searching among Intervals and Compact Routing Tables”, Proc. 20th ICALP'93, LNCS 700, pp. 28–39, Springer-Verlag.Google Scholar
  15. 15.
    G.N. Frederickson and R. Janardan, “Designing Networks with Compact Routing Tables”, Algorithmica, 3 (1988), pp. 171–190.Google Scholar
  16. 16.
    M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms”, JACM, 34 (1987), pp. 596–615.Google Scholar
  17. 17.
    Z. Galil and G. Italiano, “Fully Dynamic Algorithms for Edge-connectivity Problems”, Proc. 23rd ACM STOC, 1991, pp. 317–327.Google Scholar
  18. 18.
    H. Gazit and G. Miller, “A Parallel Algorithm for finding a Separator in Planar Graphs”, Proc. 28th IEEE Symp. on FOCS, 1987, pp. 238–248.Google Scholar
  19. 19.
    R. Hassin, “Maximum flow in (s, t)-planar networks”, IPL, 13 (1981), p. 107.Google Scholar
  20. 20.
    J. JáJá, “An Introduction to Parallel Algorithms”, Addison-Wesley, 1992.Google Scholar
  21. 21.
    D. Kavvadias, G. Pantziou, P. Spirakis and C. Zaroliagis, “Hammock-on-Ears Decomposition: A Technique for the Efficient Parallel Solution of Shortest Paths and Other Problems”, Proc. 19th MFCS'94, LNCS 841, pp. 462–472, Springer-Verlag.Google Scholar
  22. 22.
    D. Kavvadias, G. Pantziou, P. Spirakis and C. Zaroliagis, “Efficient Sequential and Parallel Algorithms for the Negative Cycle Problem”, Proc. 5th ISAAC'94, LNCS 834, pp. 270–278, Springer-Verlag.Google Scholar
  23. 23.
    P. Klein, S. Rao, M. Rauch and S. Subramanian, “Faster shortest-path algorithms for planar graphs”, Proc. 26th ACM STOC, 1994, pp. 27–37.Google Scholar
  24. 24.
    J.A. La Poutré, “Alpha-Algorithms for Incremental Planarity Testing”, Proc. 26th ACM STOC, 1994, pp. 706–715.Google Scholar
  25. 25.
    A. Lingas, “Efficient Parallel Algorithms for Path Problems in Planar Directed Graphs”, Proc. SIGAL'90, LNCS 450, pp. 447–457, 1990, Springer-Verlag.Google Scholar
  26. 26.
    G. Miller and J. Naor, “Flows in planar graphs with multiple sources and sinks”, Proc. 30th IEEE Symp. on FOCS, 1991, pp. 112–117.Google Scholar
  27. 27.
    G. Pantziou, P. Spirakis and C. Zaroliagis, “Efficient Parallel Algorithms for Shortest Paths in Planar Digraphs”, BIT 32 (1992), pp. 215–236.Google Scholar
  28. 28.
    M. Rauch, “Fully Dynamic Biconnectivity in Graphs”, Proc. 33rd IEEE Symp. on FOCS, 1992, pp. 50–59.Google Scholar
  29. 29.
    G. Ramalingan and T. Reps, “On the Computational Complexity of Incremental Algorithms”, Technical Report, University of Wisconsin-Madison, 1991.Google Scholar
  30. 30.
    D. Sleator and R. Tarjan, “A Data Structure for Dynamic Trees”, Journal Comput. System Sci. 26 (1983), pp. 362–391.Google Scholar
  31. 31.
    M. Yannakakis, “Graph Theoretic Methods in Database Theory”, Proc. ACM conference on Principles of Database Systems, 1990.Google Scholar
  32. 32.
    D. Yellin and R. Strom, “INC: A language for incremental computations”, ACM Trans. Prog. Lang. Systems, 13 (2), pp. 211–236, April 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Hristo N. Djidjev
    • 1
  • Grammati E. Pantziou
    • 2
  • Christos D. Zaroliagis
    • 3
  1. 1.Computer Science DeptRice UniversityHoustonUSA
  2. 2.Computer Science DeptUniversity of Central FloridaOrlandoUSA
  3. 3.Max-Planck Institut für InformatikSaarbrückenGermany

Personalised recommendations