Pseudorandom generators and the frequency of simplicity

  • Yenjo Han
  • Lane A. Hemaspaandra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 900)

Abstract

Allender [All89] showed that if there are dense P languages containing only a finite set of Kolmogorov-simple strings, then all pseudorandom generators are insecure. We extend this by proving that if there are dense P (or even BPP) languages containing only a sparse set of Kolmogorovsimple strings, then all pseudorandom generators are insecure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [All87]
    E. Allender. Some consequences of the existence of pseudorandom generators, preliminary version. In Proceedings of the 19th ACM Symposium on Theory of Computing, pages 151–159, 1987.Google Scholar
  2. [All89]
    E. Allender. Some consequences of the existence of pseudorandom generators. Journal of Computer and System Sciences, 39:101–124, 1989.Google Scholar
  3. [All92]
    E. Allender. Applications of time-bounded kolmogorov complexity in complexity theory. In O. Watanabe, editor, Kolmogorov Complexity and Computational Complexity, EATCS Monographs on Theoretical Computer Science, pages 4–22. Springer-Verlag, 1992.Google Scholar
  4. [BH89]
    R. Boppana and R. Hirschfeld. Pseudorandom generators and complexity classes. In Advances in Computing Research, volume 5, pages 1–26. JAI Press Inc., 1989.Google Scholar
  5. [BM82]
    M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. In Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science, pages 112–117, 1982. Final version appears as [BM84].Google Scholar
  6. [BM84]
    M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, 1984.Google Scholar
  7. [GB91]
    R. Gavaldà and J. Balcázar. Strong and robustly strong polynomial-time reducibilities to sparse sets. Theoretical Computer Science, 88:1–14, 1991.Google Scholar
  8. [Gil77]
    J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Computing, 6(4):675–695, 1977.Google Scholar
  9. [GKL93]
    O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators. SIAM Journal on Computing, 22(6):1163–1175, 1993.Google Scholar
  10. [Har83]
    J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations. In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, pages 439–445. IEEE Computer Society Press, 1983.Google Scholar
  11. [Hås90]
    J. Håstad. Pseudo-random generators under uniform assumptions. In Proceedings of the 22nd ACM Symposium on Theory of Computing, pages 395–404, 1990.Google Scholar
  12. [HU79]
    J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.Google Scholar
  13. [ILL89]
    R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random generation from oneway functions. In Proceedings of the 21st ACM Symposium on Theory of Computing, pages 12–24, 1989.Google Scholar
  14. [Lev84]
    L. Levin. Randomness conservation inequalities; information and independence in mathematical theories. Information and Control, 61:15–37, 1984.Google Scholar
  15. [Lev87]
    L. Levin. One way functions and pseudorandom generators. Combinatorica, 7(4):357–363, 1987.Google Scholar
  16. [LV93]
    M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, 1993.Google Scholar
  17. [Sip83]
    M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th ACM Symposium on Theory of Computing, pages 330–335, 1983.Google Scholar
  18. [Yao82]
    A. Yao. Theory and applications of trapdoor functions. In Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.Google Scholar
  19. [ZH86]
    S. Zachos and H. Heller. A decisive characterization of BPP. Information and Control, 69:125–135, 1986.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Yenjo Han
    • 1
  • Lane A. Hemaspaandra
    • 1
  1. 1.Department of Computer ScienceUniversity of RochesterRochesterUSA

Personalised recommendations