Advertisement

Proximity drawability: A survey extended abstract

  • Giuseppe Di Battista
  • William Lenhart
  • Giuseppe Liotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 894)

Abstract

Increasing attention has been given recently to drawings of graphs in which edges connect vertices based on some notion of proximity. Among such drawings are Gabriel, relative neighborhood, Delaunay, sphere of influence, and minimum spanning drawings. This paper attempts to survey the work that has been done to date on proximity drawings, along with some of the problems which remain open in this area.

Keywords

Minimum Span Tree Proximity Region Delaunay Triangulation Outerplanar Graph Proximity Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. K. Agarwal and J. Matoušek. Relative Neighbourhood Graphs in Three Dimensions. Computational Geometry: Theory and application, 2, 1992, pp. 1–14.Google Scholar
  2. 2.
    P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity Constraints and Representable Trees. Proc. of GD94.Google Scholar
  3. 3.
    P. Bose, W. Lenhart, and G. Liotta. Characterizing Proximity Trees. To appear in Algorithmica: Special Issue on Graph Drawing, also available as Tech. Rep. no. SOCS 93.9, School of Computer Science, McGill University.Google Scholar
  4. 4.
    B. Chazelle, H. Edelsbrunner, L. J. Guibas, J. E. Hershberger, R. Seidel, and M. Sharir. Slimming Down by Adding; Selecting Heavily Covered Points. Proc. ACM Symp. on Comp. Geom., 1990, pp. 116–127.Google Scholar
  5. 5.
    R. J. Cimikowski. Properties of Some Euclidean Proximity Graphs. Pattern Recognition Letters, 13, 1992, pp. 417–423.Google Scholar
  6. 6.
    M. de Berg, S. Carlsson, and M.H. Overmars. A General Approach to Dominance in the Plane. Journal of Algorithms, 13, 1992, pp. 274–296.Google Scholar
  7. 7.
    B. Delaunay. Sur la Sphere vide. Bull. Acad. Sci. USSR(VII), 7, 1934, pp. 793–800.Google Scholar
  8. 8.
    G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis. Algorithms for Automatic Graph Drawing: An Annotated Bibliography. To appear in Computational Geometry: Theory and Applications.Google Scholar
  9. 9.
    G. Di Battista and L. Vismara. Angles of Planar Triangular Graphs. Proc. ACM Symposium on Theory of Computing, 1993, pp. 431–437.Google Scholar
  10. 10.
    M. B. Dillencourt. Realizability of Delaunay Triangulations. Information Proc. Letters, 33, 1990, pp. 283–287.Google Scholar
  11. 11.
    M. B. Dillencourt. Toughness and Delaunay Triangulations. Discrete and Computational Geometry, 5, 1990, pp.575–601.Google Scholar
  12. 12.
    M. B. Dillencourt and W. D. Smith. Graph-Theoretical Conditions for Inscribability and Delaunay Realizability. Proc. CCCG '94, 1994, pp. 287–292.Google Scholar
  13. 13.
    P. Eades and S. Whitesides. The Realization Problem for Euclidean Minimum Spanning Trees is NP-hard. Proc. ACM Symposium on Computational Geometry, 1994, pp. 49–56.Google Scholar
  14. 14.
    H. ElGindy, G. Liotta, A. Lubiw, H. Meijer, and S.H. Whitesides. Recognizing Rectangle of Influence Drawable Graphs. Proc. of GD94.Google Scholar
  15. 15.
    K. R. Gabriel and R. R. Sokal. A New Statistical Approach to Geographical Analysis. Systematic Zoology, 18, 1969, pp. 54–64.Google Scholar
  16. 16.
    F. Harary. Graph Theory. Addison-Wesley Pub. Comp.1969.Google Scholar
  17. 17.
    M. Garey and D. Johnson. A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York, 1979.Google Scholar
  18. 18.
    R.H. Guting, O. Nurmi, and T. Ottmann. Fast Algorithms for Direct Enclosures and Direct Dominances. Journal of Algorithms, 10, 1989, pp.170–186.Google Scholar
  19. 19.
    M. Ichino, J. Sklansky. The Relative Neighborhood Graph for Mixed Feature Variables. Pattern Recognition, 18, 2, 1985, pp. 161–167.Google Scholar
  20. 20.
    M. S. Jacobson, M. J. Lipman, and F. R. McMorris. Trees that are Sphere-of-Influence Graphs. University of Louisville, Tech. Rep. 0191/2, 1989.Google Scholar
  21. 21.
    J. W. Jaromczyk and G. T. Toussaint. Relative Neighborhood Graphs and Their Relatives. Proceedings of the IEEE, 80, 1992, pp. 1502–1517.Google Scholar
  22. 22.
    J. M. Keil Computing a subgraph of the minimum weight triangulation. Computational Geometry: Theory and Applications, 4, 1994, pp. 13–26.Google Scholar
  23. 23.
    D. G. Kirkpatrick and J. D. Radke. A Framework for Computational Morphology. Computational Geometry, G. T. Toussaint, Elsevier, Amsterdam, 1985, pp. 217–248.Google Scholar
  24. 24.
    P. M. Lankford. Regionalization: Theory and Alternative Algorithms. Geographical Analysis, 1, 1989, pp. 196–212.Google Scholar
  25. 25.
    A. Lubiw, and N. Sleumer, All Maximal Outerplanar Graphs are Relative Neighborhood Graphs. Proc. CCCG '93, 1993, pp. 198–203.Google Scholar
  26. 26.
    D. W. Matula and R. R. Sokal. Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane. Geographical Analysis, 12, 3, 1980, pp. 205–222.Google Scholar
  27. 27.
    C. Monma and S. Suri. Transitions in Geometric Minimum Spanning Trees. Proc. ACM Symposium on Computational Geometry, 1991, pp. 239–249.Google Scholar
  28. 28.
    M. S. Paterson and F.F. Yao, On Nearest-Neighbor Graphs. Proc. ICALP '92, 1992, pp. 416–426.Google Scholar
  29. 29.
    M. H. Overmars and D. Wood. On Rectangular Visibility. Journal of Algorithms, 9, 1988, pp. 372–390.Google Scholar
  30. 30.
    J. D. Radke. On the shape of a set of points. Computational Morphology, ed. G. T. Toussaint, Elsevier, Amsterdam, 1988, pp. 105–136.Google Scholar
  31. 31.
    T.-H. Su and R.-Ch. Chang. The k-Gabriel Graphs and their Applications. Proc. International Symposium, SIGAL '90, 1990, pp. 66–75.Google Scholar
  32. 32.
    T.-H. Su and R.-Ch. Chang. Computing the k-relative neighborhood graphs in Euclidean Plane. Pattern Recognition, 24, 1991, pp.231–239.Google Scholar
  33. 33.
    G. T. Toussaint. The Relative Neighborhood Graph of a Finite Planar Set. Pattern Recognition, 12, 1980, pp. 261–268.Google Scholar
  34. 34.
    G. T. Toussaint. A Graph-Theoretical Primal Sketch. Computational Morphology, ed. G. T. Toussaint, Elsevier, Amsterdam, 1988, pp. 229–260.Google Scholar
  35. 35.
    R. B. Urquhart. Some Properties of the Planar Euclidean Relative Neighbourhood Graph. Pattern Recognition Letters, 1, 1983, pp. 317–322.Google Scholar
  36. 36.
    R. C. Vetkamp. The γ-Neighbourhood Graph. Computational Geometry: Theory and Applications, 1, 1992, pp. 227–246.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • William Lenhart
    • 2
  • Giuseppe Liotta
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversitá di Roma “La Sapienza”RomaItalia
  2. 2.Department of Computer ScienceWilliams CollegeWilliamstown

Personalised recommendations