Advertisement

On the computational complexity of upward and rectilinear planarity testing

  • Ashim Garg
  • Roberto Tamassia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 894)

Abstract

A directed graph is upward planar if it can be drawn in the plane such that every edge is a monotonically increasing curve in the vertical direction, and no two edges cross. An undirected graph is rectilinear planar if it can be drawn in the plane such that every edge is a horizontal or vertical segment, and no two edges cross. Testing upward planarity and rectilinear planarity are fundamental problems in the effective visualization of various graph and network structures. In this paper we show that upward planarity testing and rectilinear planarity testing are NP-complete problems. We also show that it is NP-hard to approximate the minimum number of bends in a planar orthogonal drawing of an n-vertex graph with an O(n1−∈) error, for any ∈>0.

Keywords

Planar Graph Planarity Testing Planar Drawing Acyclic Digraph Capacity Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Bertolazzi and G. Di Battista. On upward drawing testing of triconnected digraphs. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pp. 272–280, 1991.Google Scholar
  2. 2.
    P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings of triconnected digraphs. Algorithmica, to appear.Google Scholar
  3. 3.
    P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal upward planarity testing of single-source digraphs. In Proc. European Symposium on Algorithms, LNCS vol. 726, pp. 37–48. Springer-Verlag, 1993.Google Scholar
  4. 4.
    T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. In Proc. European Symp. on Algorithms, LNCS vol. 855, pp. 24–35. Springer-Verlag, 1994.Google Scholar
  5. 5.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl., to appear. Preprint available by ftp from ftp.cs.brown.edu:pub/papers/compgeo/.Google Scholar
  6. 6.
    G. Di Battista, G. Liotta, and F. Vargiu. Spirality of orthogonal representations and optimal drawings of series-parallel graphs and 3-planar graphs. In Proc. Workshop Algorithms Data Struct, LNCS vol. 709, pp. 151–162. Springer-Verlag, 1993.Google Scholar
  7. 7.
    G. Di Battista, W. P. Liu, and I. Rival. Bipartite graphs upward drawings and planarity. Inform. Process. Lett., 36:317–322, 1990.Google Scholar
  8. 8.
    G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci., 61:175–198, 1988.Google Scholar
  9. 9.
    S. Even and G. Granot. Rectilinear planar drawings with few bends in each edge. Technical Report 797, Computer Science Dept., Technion”, 1994.Google Scholar
  10. 10.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.Google Scholar
  11. 11.
    A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. Report CS-94-10, Comput. Sci. Dept., Brown Univ., Providence, RI, 1994.Google Scholar
  12. 12.
    M. D. Hutton and A. Lubiw. Upward planar drawing of single source acyclic digraphs. In Proc. 2nd ACM-SIAM Sympos. Discrete Algorithms, pp. 203–211, 1991.Google Scholar
  13. 13.
    G. Kant. Drawing planar graphs using the lmc-ordering. In Proc. 33th Annu. IEEE Sympos. Found. Comput. Sci., pp. 101–110, 1992.Google Scholar
  14. 14.
    D. Kelly. Fundamentals of planar ordered sets. Discrete Math., 63:197–216, 1987.Google Scholar
  15. 15.
    D. Kelly and I. Rival. Planar lattices. Canad. J. Math., 27(3):636–665, 1975.Google Scholar
  16. 16.
    A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. In Theory of Graphs: Internat. Symposium (Rome 1966), pp. 215–232, New York, 1967. Gordon and Breach.Google Scholar
  17. 17.
    Y. Liu, P. Marchioro, and R. Petreschi. A single bend embedding algorithm for cubic graphs. Manuscript, 1994.Google Scholar
  18. 18.
    Y. Liu, P. Marchioro, R. Petreschi, and B. Simeone. Theoretical results on at most 1-bend embeddability of graphs. Technical report, Dipartimento di Statistica, Univ. di Roma “La Sapienza”, 1990.Google Scholar
  19. 19.
    Y. Liu, A. Morgana, and B. Simeone. General theoretical results on rectilinear embeddability of graphs. Acta Math. Appl. Sinica, 7:187–192, 1991.Google Scholar
  20. 20.
    Y. Liu, A. Morgana, and B. Simeone. A linear algorithm for 3-bend embeddings of planar graphs in the grid. Manuscript, 1993.Google Scholar
  21. 21.
    A. Papakostas. Upward planarity testing of outerplanar dags. In Proc. Graph Drawing '94, 1994.Google Scholar
  22. 22.
    C. Platt. Planar lattices and planar graphs. J. Combin. Theory Ser. B, 21:30–39, 1976.Google Scholar
  23. 23.
    I. Rival. Reading, drawing, and order. In I. G. Rosenberg and G. Sabidussi, editors, Algebras and Orders, pp. 359–404. Kluwer Academic Publishers, 1993.Google Scholar
  24. 24.
    Y. Shiloach. Arrangements of Planar Graphs on the Planar Lattice. PhD thesis, Weizmann Institute of Science, 1976.Google Scholar
  25. 25.
    J. A. Storer. On minimal node-cost planar embeddings. Networks, 14:181–212, 1984.Google Scholar
  26. 26.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.Google Scholar
  27. 27.
    R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. on Circuits and Systems, CAS-36(9):1230–1234, 1989.Google Scholar
  28. 28.
    C. Thomassen. Planar acyclic oriented graphs. Order, 5(4):349–361, 1989.Google Scholar
  29. 29.
    L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput., C-30(2):135–140, 1981.Google Scholar
  30. 30.
    G. Vijayan and A. Wigderson. Rectilinear graphs and their embeddings. SIAM J. Comput., 14:355–372, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Ashim Garg
    • 1
  • Roberto Tamassia
    • 1
  1. 1.Department of Computer ScienceBrown UniversityProvidenceUSA

Personalised recommendations