Advertisement

Imprinting of synthetic polymers using molecular templates

  • J. Steinke
  • D. C. Sherrington
  • I. R. Dunkin
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 123)

Abstract

The concept of using a molecular template to generate recognition sites for selective separations or reactions within a polymeric network is an exciting, challenging and far-reaching one. This review seeks to explain and define the concept and its components. It traces the early developments by the pioneers in the field and highlights the important advances made, or the key crossroads passed, in reaching the current state-of-the-art. The various types of templates and template binding which have been explored are reviewed and achievements in re-binding or recognition discussed. Finally, the practicalities of preparing polymer networks imprinted in this manner are dealt with and guidance given in what is currently achievable and what limitations still exist.

Keywords

Methyl Orange Synthetic Polymer Imprint Polymer Boronic Acid Template Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15 References

  1. 1.
    Wulff G (1986) ACS Symp Ser 308: 186–130 In: Ford WT (ed) Polymeric reagnets and catalysts. Molecular recognition in polymers prepared by imprinting with templates. Washington DCGoogle Scholar
  2. 2.
    Watson JD, Crick FHC (1953) Nature (Lon) 171: 737Google Scholar
  3. 3.
    Todd AR (1956) In: Todd AR Perspectives in organic chemistry. Interscience, London, p 263Google Scholar
  4. 4.
    Vlatakis G, Andersson LI, Mueller R, Mosbach K (1993). Nature 361: 645–7Google Scholar
  5. 5.
    Mutter M (1989) Angew Chim Int Edn 28: 535Google Scholar
  6. 6.
    Mutter M, Tuchscherver GG, Miller GG, Altmann KH, Carey RI, Wyss DS, Labhard AM and Rivier TE (1992) J Amer Chem Soc 114: 1463Google Scholar
  7. 7.
    Mutter M and Tuchscherver GG (1988) Die Makromol. Chem Rapid 9: 437Google Scholar
  8. 8.
    Schultz PG (1988) Science 240: 426Google Scholar
  9. 9.
    Atherton E and Shepherd RC (1989) Solid Phase Peptide Synthesis, Oxford University PressGoogle Scholar
  10. 10.
    Lerner R, Benkovics SJ and Schultz PG (1991) Science 252: 659Google Scholar
  11. 11.
    Schultz DG and Lerner RA (1993) Acc Chem Res 26: 391Google Scholar
  12. 12.
    Lehn JM, Rigault A, Siegel J, Harrowfield J, Chevrier B and Mobras D (1987) Proc Natal Acad Sci USA 84: 2565Google Scholar
  13. 13.
    Lehn JM and Rigault A (1988) Angew Chem Intl. Edn 27: 1095.Google Scholar
  14. 14.
    Dietrich-Buchecker C and Sauvage JP (1992) New J Chem 16: 277Google Scholar
  15. 15.
    Dietrich-Buchecker C and Sauvage JP (1992) Bull Soc Chim Fr 129: 113Google Scholar
  16. 16.
    Anelli PL, Delgado M, Gandolfi MT, Goodnov TT, Kaifer AE, Philp D, Pietrazkiewiz M, Prodi L, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vincent C and Williams DJ (1992) J Amer Chem Soc 114: 193Google Scholar
  17. 17.
    Sauwage JP (1993) Ed New J Chem 17: pp 619–763Google Scholar
  18. 18.
    Gokel GW and Korzeniowski SH (1982) Macrocylic Polyether Syntheses, Springer Verlag, BerlinGoogle Scholar
  19. 19.
    Anderson S, Anderson HL and Saunders JKM (1993) Acc Chem Res 26: 469Google Scholar
  20. 20.
    Busch DH (1992) J Incl Phenom Mol Recog 12: 389–395Google Scholar
  21. 21.
    Busch DH and Stevenson NA (1990) Coord Chem Rev 100: 119–54Google Scholar
  22. 22.
    Lindsey JS (1991) New J Chem 15: 153–180Google Scholar
  23. 23.
    Broer DJ and Heynderickx I (1990) Macromols 23: 2474–77Google Scholar
  24. 24.
    Percec V, Heck J, Johansson G and Ungar G (1993) Polym Prepr March, 116–7Google Scholar
  25. 25.
    Challa G and Tan YY (1981) Pure Appl Chem 53: 627Google Scholar
  26. 26.
    Shavit N and Cohen J (1977) Polymerisation in Organised Systems, ed Elias HG, Gordon and Breach, London p 213Google Scholar
  27. 27.
    Wulff G and Sarhan A (1972) Angew Chem Int Ed Engl 84: 364–5Google Scholar
  28. 28.
    Wulff G, Sarhan A and Sabrocki K (1973) Tetrahedron Lett 37: 4329–32Google Scholar
  29. 29.
    Dunkin IR, Sherrington DC and Steinke J (1994) unpublished results. Steinke J Ph.D. Thesis University of Strathclyde, Glasgow, U.K.Google Scholar
  30. 30.
    Guyot A (1988) In: Syntheses and Separations Using Functional Polymers, Sherrington DC and Hodge P Eds J Wiley and Sons, Chichester, U.K. Chap. 1. p1.Google Scholar
  31. 31.
    Mudd S (1932) J Immunol 23: 423–7Google Scholar
  32. 32.
    Pauling L (1940) J Amer Chem Soc 62: 2643–57Google Scholar
  33. 33.
    Pressman D and Pauling L (1949) J Amer Chem Soc 71: 2893–2899Google Scholar
  34. 34.
    Dickey FH (1949) Proc Natl Acad Sci 35: 277–9Google Scholar
  35. 35.
    Dickey FH (1955) J Phys Chem 59: 695–707Google Scholar
  36. 36.
    Bernhard SA (1952) J Amer Chem Soc 74: 4946–7Google Scholar
  37. 37.
    Erlenmeyer H and Bartels H (1964) Helv Chim Acta 47: 46–51Google Scholar
  38. 38.
    Haldeman RG and Emmett PH (1955) J Phys Chem 59: 1039–43Google Scholar
  39. 39.
    Curti R, Colombo U and Clerici F (1952) Gazz Chim Ital 82: 491–502Google Scholar
  40. 40.
    Morrison JL, Worsley M, Shaw DR and Hodgson GW (1959) Can J Chem 37: 1986–95Google Scholar
  41. 41.
    Bartels H and Prijs B (1974) Adv Chrom 11: 115–43Google Scholar
  42. 42.
    Bartels H (1967) J Chrom 30: 113–6Google Scholar
  43. 43.
    Curti R and Colombo U (1952) J Amer Chem Soc 74: 3961Google Scholar
  44. 44.
    Beckett AH (1957) Nature 179: 1074Google Scholar
  45. 45.
    Beckett AH and Anderson P (1960) J Pharm Pharmacol 12: 228T–36TGoogle Scholar
  46. 46.
    Beckett AH and Youssef HZ (1963) J Pharm Pharmacol 15: 253T–66TGoogle Scholar
  47. 47.
    Erlenmeyer H and Bartels H (1964) Helv Chem Acta 47: 1285–88Google Scholar
  48. 48.
    Bartels H and Erlenmeyer H (1965) Helv Chim Acta 48: 285–90Google Scholar
  49. 49.
    Erlenmeyer H and Bartels H (1965) Helv Chim Acta 48: 301–3Google Scholar
  50. 50.
    Bartels H, Prijs B and Erlenmeyer H (1966) Helv Chim Acta 49: 621–25Google Scholar
  51. 51.
    Bartels H (1967) Z Anorg Allg Chem 350: 143–7Google Scholar
  52. 52.
    Kaiser GG and Andersson JT (1992) Fres J Analyt Chem 342: 834–9Google Scholar
  53. 53.
    Takagishi T and Klotz IM (1972) Biopolymers 11: 483–91Google Scholar
  54. 54.
    Takagishi T, Hayashi A and Kuroki N. (1982) J Polym Sci Polym Chem Ed 20: 1533–47Google Scholar
  55. 55.
    Takagishi T, Sugimoto T, Hamano H, Lim Y.-J., Kuroki N and Kuzoka H (1984) J Polym Sci Polym Lett Ed 22: 283–9Google Scholar
  56. 56.
    Takagishi T, Sugimoto T. Hamano H, Lim Y.-J. and Kuroki N (1984) J Polym Sci Polym Chem Ed (1984) 22: 4035–9Google Scholar
  57. 57.
    Takagishi T, Hamana H, Shimokado T and Kuroki N (1985) J Polym Sci Polym Lett Ed (1985) 23: 545–8Google Scholar
  58. 58.
    Kozuka H, Takagishi T, Yoshikawa K, Kuroki N and Mitsuishi M (1985) J Polym Sci Polym Chem Ed (1985) 24: 2695–700Google Scholar
  59. 59.
    Takagishi T and Okada M (1986) Chem Express 1: 359–62Google Scholar
  60. 60.
    Shinkai S, Yamada M, Sone T and Manabe O (1983) Tetrahedron Lett 24: 3501–4Google Scholar
  61. 61.
    Cleland WW (1975) Acc Chem Res 8: 145–51Google Scholar
  62. 62.
    Wulff G (1993) Makromol Chem Macromol Symp 70: 285–8Google Scholar
  63. 63.
    Wulff G, Minarik M and Schauhoff S (1991) GIT Fachz Lab 35: 10–12, 15–17Google Scholar
  64. 64.
    Wulff G and Haarer J (1991) Makromol Chem 192: 1329–38Google Scholar
  65. 65.
    Damen J and Neckers DC (1980) J Amer Chem Soc 102: 3265–7Google Scholar
  66. 66.
    Damen J and Neckers DC (1980) J Org Chem 45: 1382–7Google Scholar
  67. 67.
    Sarhan A (1982) Makromol Chem Rapid Commun 3: 489–94Google Scholar
  68. 68.
    Sarhan A, Ali MM and Abdelaal MY (1989) React Polym 11: 57–70Google Scholar
  69. 69.
    Sarhan A (1989) Makromol Chem 190: 2031–9Google Scholar
  70. 70.
    Shea KJ and Thompson EA (1978) J Org Chem 43: 4253–5Google Scholar
  71. 71.
    Wulff G and Minarik M. (1990) J Liq Chrom 13: 2987–3001Google Scholar
  72. 72.
    Wulff G, Poll H.-G, Minarik M (1986) J Liq Chrom 9: 385–405Google Scholar
  73. 73.
    Steinke JHG (1990) Diplomarbeit, Heinrich-Heine-Universität DüsseldorfGoogle Scholar
  74. 74.
    Wulff G, Vietmeier J and Poll H-G (1987) Makromol Chem 188: 731–40Google Scholar
  75. 75.
    Wulff G and Vesper W (1978) J Chrom 167: 171–86Google Scholar
  76. 76.
    Wulff G, Oberkobusch D and Minarik M (1985) React Polym 3: 161–75Google Scholar
  77. 77.
    Wulff G, Vesper W, Grobe-Einsler R and Sarhan A (1977) Makromol Chem 178: 2817–25Google Scholar
  78. 78.
    Sarhan A and Wulff G (1982) Macromol Chem 183: 85–92.Google Scholar
  79. 79.
    Wulff G and Sarhan A (1982) Makromol Chem 183: 1603–1614Google Scholar
  80. 80.
    Wulff G and Sarhan A (1982) Makromol Chem 188: 741–48Google Scholar
  81. 81.
    Wulff G, Best W and Akelah A (1984) React Polym Exch Sorb 2: 167–74Google Scholar
  82. 82.
    Damen J and Neckers DC (1980) Tetrahedron Lett 21: 1913–6Google Scholar
  83. 83.
    Shea KJ and Sasaki DY (1989) J Amer Chem Soc 111: 3442–4Google Scholar
  84. 84.
    Shea KJ and Dougherty TK (1986) J Amer Chem Soc 108: 1091.3Google Scholar
  85. 85.
    Wulff G (1982) Pure Appl Chem 54: 2039–102Google Scholar
  86. 86.
    Wulff G, Schultze I, Zabrocki K and Vesper W (1980) Makromol Chem 181: 531–44Google Scholar
  87. 87.
    Wulff G, Vesper W, Grobe-Einsler R and Sarham A (1977) Makromol Chem 178: 2799–816Google Scholar
  88. 88.
    Wulff G and Vietmeier J (1989) Makromol Chem 190: 1717–26Google Scholar
  89. 89.
    Wulff G and Vietmeier J (1989) Makromol Chem 190: 1727–35Google Scholar
  90. 90.
    Sellergren B, Lepistö M and Mosbach K (1988) J Amer Chem Soc 110: 5853–60Google Scholar
  91. 91.
    Arshady R and Mosbach K (1981) Makromol Chem 182: 687–92Google Scholar
  92. 92.
    Andersson LI, Miyabayashi A, O'Shannessy DJ and Mosbach K (1990) J Chrom 516: 323–33Google Scholar
  93. 93.
    Ekberg B and Mosbach K (1989) TIBTECH 7: 92–6Google Scholar
  94. 94.
    Fischer L, Mueller R, Ekberg B and Mosbach K (1991) J Amer Chem Soc 113: 9358–60Google Scholar
  95. 95.
    Lepistö M and Sellergren B (1989) J Org Chem 54: 6010–2Google Scholar
  96. 96.
    Sellergren B (1989) Makromol Chem 190: 2703–11Google Scholar
  97. 97.
    Sellergren B and Andersson LI (1990) J Org Chem 55: 3381–2Google Scholar
  98. 98.
    Sellergen B (1989) Chirality 1: 63–8Google Scholar
  99. 99.
    Andersson LI (1988) React Polym 9: 29–41Google Scholar
  100. 100.
    Andersson LI and Mosbach K (1990) J Chrom 516: 313–23Google Scholar
  101. 101.
    Andersson LI, Sellergren B and Mosbach K (1984) Tetrahedron Lett 25: 5211–14Google Scholar
  102. 102.
    Andersson LI and Mosbach K (1990) J Chrom 516: 313–23Google Scholar
  103. 103.
    Sellergren B and Nilsson KGI (1989) Meth Mol Cell Biol 1: 59–62Google Scholar
  104. 104.
    Anderson LI, O'Shannessy DJ and Mosbach K (1990) J Chrom 513: 167–81Google Scholar
  105. 105.
    O'Shannessy DJ, Ekberg B and Mosbach K (1989) Anal Biochem 177: 144–51Google Scholar
  106. 106.
    Sellergren B and Shea KJ (1993) J Chrom 635: 31–49Google Scholar
  107. 107.
    Sellergren B, Ekberg B and Mosbach K (1985) J Chrom 347: 1–10Google Scholar
  108. 108.
    O'Shannessy DJ, Andersson LI and Mosbach K (1989) J Mol Recog 2: 1–5Google Scholar
  109. 109.
    Kempe M and Mosbach K (1991) Analyt Lett 24: 1137–45Google Scholar
  110. 110.
    Sellergren B and Shea KJ (1993) J Chrom submittedGoogle Scholar
  111. 111.
    Shea KJ, Spivak DA and Sellergren B (1993) J Amer Chem Soc 115: 3368–9Google Scholar
  112. 112.
    Dunkin IR, Lenfeld J and Sherrington DC (1993) Polymer 34: 77–84Google Scholar
  113. 113.
    Sagiv J (1979) Isr J Chem 18: 346–53Google Scholar
  114. 114.
    Wulff G, Heide B and Helfmeier G (1986) J Amer Chem Soc 108: 1089–91Google Scholar
  115. 115.
    Toa Y-T and Ho Y-H (1988) J Chem Soc Chem Commun 417–8Google Scholar
  116. 116.
    Tahmassebi DC and Sasaki T (1992) Abstr Amer Chem Soc 204: Aug, 314 (ORGN)Google Scholar
  117. 117.
    Wulff G and Görlich T, private communicationGoogle Scholar
  118. 118.
    Norrloew O, Månsson M-O and Mosbach K (1987) J Chrom 396: 374–77Google Scholar
  119. 119.
    Wulff G, Lauer M and Disse B (1979) Disse Chem Ber 112: 2854–65Google Scholar
  120. 120.
    Wulff G, Heide B and Helfmeier G (1987) React Polym Ion Exch Sorb 6: 299–310Google Scholar
  121. 121.
    Shea KJ and Sasaki DY (1991) J Amer Chem Soc 113: 4109–21Google Scholar
  122. 122.
    Kljatschenko WA (1951) Dokl Acad Nauk S.S.S.R. 81: 235ffGoogle Scholar
  123. 123.
    Stanberg J, Seidl J and Rahn J (1958) J Polym Sci (1958) B 31: 15–24Google Scholar
  124. 124.
    Nishide H, Deguchi J and Tsuchida E (1976) Chem Lett 2: 169–74Google Scholar
  125. 125.
    Nishide H, Deguchi J and Tsuchida E (1977) J Polym Sci Polym Chem 15: 3023–9Google Scholar
  126. 126.
    Nishide H and Tsuchida E (1976) Makromol Chem 177: 2295–310Google Scholar
  127. 127.
    Kato M, Nishide N, Tsuchida E and Sasaki T (1981) J Polym Sci Polym Chem 19: 1803–9Google Scholar
  128. 128.
    Efendiev AA and Kabanov VA (1982) Pure Appl Chem 54: 2077–92Google Scholar
  129. 129.
    Kabanov VA, Efendiev AA and Orujev DD (1979) J Appl Polym Sci 24: 259–67Google Scholar
  130. 130.
    Gupta SN and Neckers DC (1982) J Polym Sci Polym Chem 20: 1609–22Google Scholar
  131. 131.
    Neckers DC (1985) Polymeric bipyridines as chelating agents and catalysts, in Metalcontaining polymer systems, Seats JE, Carraher CE, Pittman CU, Jr (eds), Plenum Press NY, LondonGoogle Scholar
  132. 132.
    Kuchen W and Schram J (1988) Angew Chem Int Ed Engl 27: 1695–7Google Scholar
  133. 133.
    Harkins DA and Schweitzer GK (1991) Sep Sci Techn 26: 345–55Google Scholar
  134. 134.
    Tsukagashi K, Yu KY, Maeda M and Takagi M (1993) Bull Chem Soc Jpn 66: 114–20Google Scholar
  135. 135.
    Chanda M and Rempel GL (1992) React Polym 16: 149–58Google Scholar
  136. 136.
    Choi KS (1990) Makromol Chem Makromol Symp 33: 55–63Google Scholar
  137. 137.
    Rosatzin T, Andersson LI, Simon W and Mosbach K (1991) J Chem Soc Perkin Trans II 8: 1261–7Google Scholar
  138. 138.
    Bidan G, Divisia-Blohorn B, Lapkowski M, Kern J-M and Sauvage J-P (1992) J Amer Chem Soc 114: 5986–94Google Scholar
  139. 139.
    Belokon YN, Tararov I, Savel'eva TF, Vorob'ev MM, Vitt SV, Sizoy VF, Sukhacheva NA, Vasil'ev GV and Belekov VM (1983) Makromol Chem 184: 2213–23Google Scholar
  140. 140.
    Fuji Y, Matsutani K and Kilkuchi K (1985) J Chem Soc Chem Commun 415–7Google Scholar
  141. 141.
    Fuji Y, Matsutani K, Ota M, Adachi M, Savoji I, Haneishi and Kuwana Y (1984) Chem Lett 1487–90Google Scholar
  142. 142.
    Dhal PK and Arnold FH (1991) J Amer Chem Soc 113: 7417–8Google Scholar
  143. 143.
    Yamamura K, Hatakeyama H, Naha K, Tabushi I (the late) and Kurihara K (1988) J Chem Soc Chem Commun 79–81Google Scholar
  144. 144.
    Byström SE, Börje A and Akermark B (1993) J Amer Chem Soc 115: 2081–3Google Scholar
  145. 145.
    Sarhan A, Abou M and El-Zabah (1987) Makromol Chem Rapid Commun 8: 555Google Scholar
  146. 146.
    Andersson LI and Mosbach K (1989) Makromol Chem Rapid Commun 10: 491–5Google Scholar
  147. 147.
    Hopkins A and Williams A (1983) J Chem Soc Perkin Trans II 891–6Google Scholar
  148. 148.
    Leonhardt A and Mosbach K (1987) React Polym Ion Exch Sorbents 6: 285–6Google Scholar
  149. 149.
    Robinson DK and Mosbach K (1989) J Chem Soc Chem Commun 969–70Google Scholar
  150. 150.
    Morihara K, Kurihara S and Suzuki J (1988) Bull Chem Soc Jpn 61: 3991–8Google Scholar
  151. 151.
    Morihara K, Nishihata E, Kojima M and Miyake S (1988) Bull Chem Soc Jpn 61: 3999–4003Google Scholar
  152. 152.
    Shimada T, Nakamishi K and Morihara K (1992) Bull Chem Soc Jpn 65: 954–8Google Scholar
  153. 153.
    Morihara K, Tanaka E, Takeuchi Y, Miyazaki K, Yamamoto N, Sagawa Y, Kawamoto E and Shimida T (1989) Bull Chem Soc Jpn 62: 499–505Google Scholar
  154. 154.
    Morihara K, Kurokawa M, Kamata Y and Shimada T (1992) J Chem Soc Chem Commun 358–60Google Scholar
  155. 155.
    Morihara K, Kawasaki S and Kofuji M and Shimada T (1993) Bull Chem Soc Jpn 66: 906–13Google Scholar
  156. 156.
    Muller R, Andersson LI and Mosbach K (1993) Makromol Chem Rapid Comm 14: 637Google Scholar
  157. 157.
    Shokat KM, Leumann CJ, Sugasaware R and Schultz PG (1989) Nature 338: 169Google Scholar
  158. 158.
    Klibanov AM (1989) Trends Biochem Sci 14: 141Google Scholar
  159. 159.
    Russell AJ and Klibanov AM (1988) J Biol Chem 263: 1624–6Google Scholar
  160. 160.
    Braco L, Dabulis K and Klibanov AM (1990) Proc Natl Acad Sci 87: 274–7Google Scholar
  161. 161.
    Dabulis K and Klibanov AM (1992) Biotech Bioeng 39: 176–85Google Scholar
  162. 162.
    Ståhl M, Månsson M-O and Mosbach K (1990) Biotech Lett 12: 161–6Google Scholar
  163. 163.
    Ståhl M, Jeppssonwistrand U, Månsson M-O and Mosbach K (1991) J Amer Chem Soc 113: 9366–8Google Scholar
  164. 164.
    Ståhl M, Månsson M-O and Mosbach K (1993) Protein Eng 6: 51–51Google Scholar
  165. 165.
    Kriegel T, Schellenberger W, Kopfschläger G and Hoffmann E (1991) Biomed Biochim Acta 50: 1159–65Google Scholar
  166. 166.
    Schultz PG (1989) Angew Chem Int Ed Engl 28: 1283–95Google Scholar
  167. 167.
    Green BS (1991) Curr Opin Biotech 2: 395–400Google Scholar
  168. 168.
    Rini JM, Schulzegahmen U and Wilson IA (1992) Science 255: 959–66Google Scholar
  169. 169.
    Tramontano A, Janda KD and Lerner RA (1986) Proc Natl Acad Sci 83: 6736–40Google Scholar
  170. 170.
    Pollack SJ, Jacobs JW and Schultz PG (1986) Science 234: 1570–3Google Scholar
  171. 171.
    Winteer G and Milstein C (1991) Nature 349: 293–9Google Scholar
  172. 172.
    Lerner RA, Kang AS, Bain JD, Burton DR and Barbas CF (1992) Science 285: 1313Google Scholar
  173. 173.
    Tawfik DS, Zemel RR, Arrad-Yellin R, Green BS and Eshhar Z (1990) Biochemistry 29: 9916–21Google Scholar
  174. 174.
    Shokat KM, Ko MK, Scanlin TS, Kochersperger L, Yonkovich L, Thaisrivongs S and Schultz PG (1990) Angew Chem Int. Ed Engl 29: 1296–1303.Google Scholar
  175. 175.
    Reymond JL, Janda KD and Lerner RA (1991) Angew Chem Int Ed Engl 30: 1711–3Google Scholar
  176. 176.
    Iverson BI, Cameron KE, Jahangiri GK and Pasternak DS (1990) J Amer Chem Soc 112: 5320–3Google Scholar
  177. 177.
    Iverson BL and Lerner RA (1989) Science 243: 1184–8Google Scholar
  178. 178.
    Scanlan TS, Prudent JR and Schultz PG (1991) J Amer Chem Soc 113: 9397–8Google Scholar
  179. 179.
    Sinha SC, Keiman E and Reymond J-L (1993) J Amer Chem Soc 115: 4893–4Google Scholar
  180. 180.
    Liotta LJ, Benkovic PA and Miller GP (1993) J Amer Chem Soc 115: 350–1Google Scholar
  181. 181.
    Braisted AC and Schultz PlG (1990) J Amer Chem Soc 112: 7430–1Google Scholar
  182. 182.
    Keinan E, Sinha SC, Sinha-Bagchi A, Benory E, Ghozi MC, Eshhar Z and Green BS (1990) Pure Appl Chem 62: 2013–9Google Scholar
  183. 183.
    IKeda S, Weinhouse MI, Janda KD, Lerner RA and Danishefsky SJ (1991) J Amer Chem Soc 113: 7763–4Google Scholar
  184. 184.
    Jackson DY, Liang MN, Bartlett PA and Schultz PG (1992) Angew Chem Int Ed Engl (1992) 3: 182–3Google Scholar
  185. 185.
    Jackson JR, Prudent JR, Kochersperger L, Yonkovich S and Schultz PG (1992) Science 256: 365–7Google Scholar
  186. 186.
    Uno T and Schultz PG (1992) J Amer Chem Soc 114: 6573–4Google Scholar
  187. 187.
    Fernholz E, Schloeder D, Liu KKC, Bradshaw CW, Huang HM, Janda KD, Lerner RA and Wong CH (1992) J Org Chem 57: 4756–61Google Scholar
  188. 188.
    Gibbs RA, Taylor S and Benkovic SJ (1992) Science 258: 803–6Google Scholar
  189. 189.
    Jackson DY, Prudent JR, Baldwin EP and Schultz PG (1991) Proc Natl. Acad Sci 58: 58–62Google Scholar
  190. 190.
    Shea KJ, Stoddard GJ, Shavelle DM, Walmi F and Choate MM (1990) Macromols 23: 4497–507Google Scholar
  191. 191.
    Shea KJ, Thompson EA, Pandy SD and Beauchamp PS (1980) J Amer Chem Soc 102: 3149–3155Google Scholar
  192. 192.
    Csaba G, Kovács P, László V (1989) Acta Protozoologica 28: 175–82Google Scholar
  193. 193.
    Wulff G, Private CommunicationGoogle Scholar
  194. 194.
    Wulff G and Stellbrink H (1990) Rec Trav Chim Payes-Bas (J Roy Soc Neth Chem Soc) 109: 216–21Google Scholar
  195. 195.
    Gelfi C and Righetti PG (1981) Electrophoresis 2: 220–28Google Scholar
  196. 196.
    Wu TF and Orgel LE (1992) J Amer Chem Soc 114: 5496–500Google Scholar
  197. 197.
    Wu TF and Orgel LE (1992) J Amer Chem Soc 114: 7963–8Google Scholar
  198. 198.
    Rosenberg J-E and Flodin P (1987) Macromols 20: 1518–22Google Scholar
  199. 199.
    Rosenberg J-E and Flodin P (1986) Macromols 19: 1543–6Google Scholar
  200. 200.
    Hoss R and Vogtle F (1994) Angew Chem Int Edn Engl 33: 375Google Scholar
  201. 201.
    Mullis KB, Scientific American, April 1990, p 56Google Scholar
  202. 202.
    Erlich HA, Gelfand D and Sninsky JJ, Science (1991) 252: 1643Google Scholar
  203. 203.
    Brock TD and Freeze H J. Bacteriol (1969) 98: 289Google Scholar
  204. 204.
    Saiki RK, Science (1988) 239: 487Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. Steinke
    • 1
  • D. C. Sherrington
    • 1
  • I. R. Dunkin
    • 1
  1. 1.Department of Pure & Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations