Languages for polynomial-time queries — An ongoing quest

  • Phokion G. Kolaitis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 893)


Horn Clause Finite Model Theoretical Computer Science Relational Query Database Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proc. 23rd ACM Symp. on Theory of Computing, pages 209–219, 1991.Google Scholar
  2. 2.
    F. Afrati, S. S. Cosmadakis, and M. Yannakakis. On Datalog vs. polynomial time. In Proc. 10th ACM Symp. on Principles of Database Systems, 1991.Google Scholar
  3. 3.
    A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Proc. 6th ACM Symp. on Principles of Programming Languages, pages 110–117, 1979.Google Scholar
  4. 4.
    J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4):389–410, 1992.CrossRefGoogle Scholar
  5. 5.
    A. Chandra and D. Harel. Horn clause queries and generalizations. Journal of Logic Programming, 1:1–15, 1985.CrossRefGoogle Scholar
  6. 6.
    A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer and System Sciences, 25:99–128, 1982.CrossRefGoogle Scholar
  7. 7.
    A. Dawar. Feasible computation through model theory. PhD thesis, University of Pennsylvania, Philadelphia, 1993.Google Scholar
  8. 8.
    R. Fagin. Finite-model theory—a personal perspective. Theoretical Computer Science, 116(1):3–31, 1993.Google Scholar
  9. 9.
    Y. Gurevich. Logic and the challenge of computer science. In E. Börger, editor, Current trends in theoretical computer science, pages 1–57, Computer Science Press, 1988.Google Scholar
  10. 10.
    Y. Gurevich. Toward logic tailored for computational complexity. In M. M. Ricther et al., editor, Computation and Proof Theory, Lecture Notes in Mathematics 1104, pages 175–216, Springer-Verlag, 1984.Google Scholar
  11. 11.
    Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of Pure and Applied Logic, 32:265–280, 1986.CrossRefGoogle Scholar
  12. 12.
    L. Hella. Logical hierarchies in PTIME. In Proc. 7th IEEE Symp. on Logic in Computer Science, pages 360–368, 1992.Google Scholar
  13. 13.
    L. Hella, Ph.G. Kolaitis, and K. Luosto. How to define a linear order on finite models. In Proc. 9th IEEE Symp. on Logic in Computer Science, pages 40–49, 1994.Google Scholar
  14. 14.
    N. Immerman. Descriptive and computational complexity. In J. Hartmanis, editor, Computational Complexity Theory, Proc. Symp. Applied Math., Vol. 38, pages 75–91, American Mathematical Society, 1989.Google Scholar
  15. 15.
    N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86–104, 1986.CrossRefGoogle Scholar
  16. 16.
    N. Immerman and E. S. Lander. Describing graphs: a first-order approach to graph canonization. In A. Selman, editor, Complexity Theory Retrospective, pages 59–81, Springer-Verlag, 1990.Google Scholar
  17. 17.
    Ph. G. Kolaitis and J. K. Väänänen. Generalized quantifiers and pebble games on finite structures. In Proc. 7th IEEE Symp. on Logic in Computer Science, pages 348–359, 1992.Google Scholar
  18. 18.
    C. H. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the EATCS, 26:21–23, 1985.Google Scholar
  19. 19.
    M. Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp. on Theory of Computing, pages 137–146, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Phokion G. Kolaitis
    • 1
  1. 1.Computer and Information SciencesUniversity of California, Santa CruzSanta CruzUSA

Personalised recommendations