Datalog queries of set constraint databases

  • Peter Z. Revesz
Contributed Papers Query Languages III
Part of the Lecture Notes in Computer Science book series (LNCS, volume 893)

Abstract

Extension of the relational database model to represent complex data has been a focus of much research in recent years. At the same time, an alternative extension of the relational database model has proposed using constraint databases that finitely describe infinite relations. This paper attempts to combine these two divergent approaches. In particular a query language called Datalog with set order constraints, or DatalogP(Z), is proposed. This language can express many natural problems with sets, including reasoning about inheritance hierarchies. DatalogP(Z) queries over set constraint databases are shown to be evaluable bottom-up in closed form and to have DEXPTIME-complete data complexity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aiken. Set Constraints: Results, Applications and Future Directions. Proc. 2nd Workshop on Principles and Practice of Constraint Programming, 171–179, 1994.Google Scholar
  2. 2.
    F. Afrati, S.S. Cosmadakis, S. Grumbach, G.M. Kuper. Linear vs. Polynomial Constraints in Database Query Languages. Proc. 2nd Workshop on Principles and Practice of Constraint Programming, 152–160, 1994.Google Scholar
  3. 3.
    M. Baudinet, M. Niette, P. Wolper. On the Representation of Infinite Temporal Data and Queries. Proc. 10th ACM PODS, 280–290, 1991.Google Scholar
  4. 4.
    A. Brodsky, J. Jaffar, M. J. Maher. Toward Practical Constraint Databases, Proc. VLDB, 1993.Google Scholar
  5. 5.
    A.K. Chandra, D. Harel. Computable Queries for Relational Data Bases. Journal of Computer and System Sciences, 21:156–178, 1980.CrossRefGoogle Scholar
  6. 6.
    J. Chomicki. Polynomial Time Query Processing in Temporal Deductive Databases. Proc. 9th ACM PODS, 379–391, 1990.Google Scholar
  7. 7.
    J. Chomicki, T. Imielinski. Finite Representation of Infinite Query Answers. ACM Transactions of Database Systems, 181–223, vol. 18, no. 2, 1993.Google Scholar
  8. 8.
    J. Chomicki, G. Kuper. Measuring Infinite Relations, Proc. Workshop on Constraints and Databases, 1994.Google Scholar
  9. 9.
    A. Colmerauer. An Introduction to Prolog III. CACM, 28(4):412–418, 1990.Google Scholar
  10. 10.
    J. Cox, K. McAloon. Decision Procedures for Constraint Based Extensions of Datalog. In: Constraint Logic Programming, MIT Press, 1993.Google Scholar
  11. 11.
    M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The Constraint Logic Programming Language CHIP. Proc. Fifth Generation Computer Systems, 1988.Google Scholar
  12. 12.
    N. Heintze, J. Jaffar. Set Constraints and Set-Based Analysis. Proc. 2nd Workshop on Principles and Practice of Constraint Programming, 1–17, 1994.Google Scholar
  13. 13.
    S. Grumbach, J Su. Finitely Representable Databases. Proc. 13th ACM PODS, 289–300, 1994.Google Scholar
  14. 14.
    J. Jaffar, J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM POPL, 111–119, 1987.Google Scholar
  15. 15.
    J. Jaffar, S. Michaylov, P.J. Stuckey, R.H. Yap. The CLP(R) Language and System. ACM Transactions on Programming Languages and Systems, 14:3, 339–395, 1992.CrossRefGoogle Scholar
  16. 16.
    F. Kabanza, J-M. Stevenne, P. Wolper. Handling Infinite Temporal Data. Proc. 9th ACM PODS, 392–403, 1990.Google Scholar
  17. 17.
    P.C. Kanellakis, D.Q. Goldin. Constraint Programming and Database Query Languages. Proc. 2nd TACS, 1994.Google Scholar
  18. 18.
    P. C. Kanellakis, G. M. Kuper, P. Z. Revesz. Constraint Query Languages. Proc. 9th ACM PODS, 299–313, 1990. Final version to appear in Journal of Computer and System Sciences.Google Scholar
  19. 19.
    P.C. Kanellakis, S. Ramaswamy, D.E. Vengroff, J.S. Vitter. Indexing for Data Models with Constraints and Classes Proc. 12th ACM PODS, 1993.Google Scholar
  20. 20.
    M. Koubarakis. Representing and Querying in Temporal Databases: the Power of Temporal Constraints. Proc. Ninth International Conference on Data Engineering, 1993.Google Scholar
  21. 21.
    M. Koubarakis. Complexity Results for First-Order Theories of Temporal Constraints. Int. Conf. on Knowledge Representation and Reasoning, 1994.Google Scholar
  22. 22.
    G. M. Kuper. Logic Programming with Sets. Journal of Computer and System Sciences, 41, 44–64, 1990.Google Scholar
  23. 23.
    J. Paradeans, J. Van den Bussche, D. Van Gucht. Towards a Theory of Spatial Database Queries. Proc. 13th ACM PODS, 279–288, 1994.Google Scholar
  24. 24.
    R. Ramakrishnan, D. Srivastava, S. Sudarshan. CORAL: Control, Relations and Logic. Proc. VLDB, 1992.Google Scholar
  25. 25.
    P. Z. Revesz. A Closed Form Evaluation for Datalog Queries with Integer (Gap)-Order Constraints, Theoretical Computer Science, vol. 116, no. 1, 117–149, 1993. (Preliminary version in 3rd ICDT, 185–201, 1990.)Google Scholar
  26. 26.
    D. Srivastava. Subsumption and Indexing in Constraint Query Languages with Linear Arithmetic Constraints. Proc. 2nd International Symposium on Artificial Intelligence and Mathematics, 1992.Google Scholar
  27. 27.
    D. Srivastava, R. Ramakrishnan, P.Z. Revesz. Constraint Objects. Proc. 2nd Workshop on Principles and Practice of Constraint Programming, 274–284, 1994.Google Scholar
  28. 28.
    D. Toman, J. Chomicki, D.S. Rogers. Datalog with Integer Periodicity Constraints. Proc. ILPS, 1994.Google Scholar
  29. 29.
    S. Tsur and C. Zaniolo. LDL: A Logic-Based Data-Language. Proc. VLDB, pp 33–41, 1986.Google Scholar
  30. 30.
    P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.Google Scholar
  31. 31.
    M. Vardi. The Complexity of Relational Query Languages. Proc. 14th ACM Symposium on the Theory of Computing, 137–145, 1982.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Peter Z. Revesz
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations