The function field sieve

  • Leonard M. Adleman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 877)


The fastest method known for factoring integers is the ‘number field sieve’. An analogous method over function fields is developed, the ‘function field sieve’, and applied to calculating discrete logarithms over GF(pn). An heuristic analysis shows that there exists a cε ℜ>0 such that the function field sieve computes discrete logarithms within random time: L p n [1/3, c] when log(p) ≤ n9(n) where g is any function such that g: N → ℜ >0 <.98 approaches zero as n → ∞.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ad1]
    Adleman L.M., Factoring numbers using singular integers, Proc. 23rd Annual ACM Symposium on Theory of Computing, 1991, pp. 64–71.Google Scholar
  2. [Be1]
    Berlekamp E., Factoring polynomials over large finite fields. Math. Comp. 24, 1970. pp. 713–735.Google Scholar
  3. [CF1]
    Cassels J.W.S. and Fröhlich A., Algebraic Number Theory, Thompson Book Company, Washington, D.C. 1967.Google Scholar
  4. [Co1]
    Coppersmith D., Modifications to the Number Field Sieve. IBM Research Report #RC 16264, November, 1990.Google Scholar
  5. [Co2]
    Coppersmith D., Fast Evaluation of Logarithms in Fields of Characteristic Two. IEEE Trans on Information Theory, vol IT-30, No 4, July 1984, pp. 587–594.Google Scholar
  6. [Fu1]
    Fulton W., Algebraic Curves, The Benjamin/Cummings Publishing Company, Menlo Park, 1969.Google Scholar
  7. [Go1]
    Gordon D.M., Discrete logarithms in GF(p) using the number field sieve, manuscript, April 4, 1990.Google Scholar
  8. [Go2]
    Gordon D.M., Discrete logarithms in GF(p n) using the number field sieve (preliminary version), manuscript, November 29, 1990.Google Scholar
  9. [Ha1]
    Hasse H., Number Theory. English Translation by H. Zimmer. Springer-Verlag, Berlin. 1980.Google Scholar
  10. [Ka1]
    Kalofen E., Fast parallel absolute irreducibility testing. J. Symbolic Computation 1, 1985, pp. 57–67.Google Scholar
  11. [LL1]
    A.K. Lenstra and H.W. Lenstra Jr. (Eds.), The development of the number field sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin. 1993.Google Scholar
  12. [Lo1]
    Lovorn R., Rigorous Subexponential Algorithms For Discrete Logarithms Overr Finite Fields. Ph.D. Thesis. Universiy of Georgia, Athens, Georgia. 1992.Google Scholar
  13. [Wi1]
    Wiedermann D. Solving sparse linear equations over finite fields. IEEE Trans. Inform. Theory. IT-32, pp. 54–62Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Leonard M. Adleman
    • 1
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos Angeles

Personalised recommendations