Decomposition of algebraic functions

  • Dexter Kozen
  • Susan Landau
  • Richard Zippel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 877)

Abstract

Functional decomposition—whether a function f(x) can be written as a composition of functions g(h(x)) in a nontrivial way—is an important primitive in symbolic computation systems. The problem of univariate polynomial decomposition was shown to have an efficient solution by Kozen and Landau [9]. Dickerson [5] and von zur Gathen [13] gave algorithms for certain multivariate cases. Zippel [15] showed how to decompose rational functions. In this paper, we address the issue of decomposition of algebraic functions. We show that the problem is related to univariate resultants in algebraic function fields, and in fact can be reformulated as a problem of resultant decomposition. We characterize all decompositions of a given algebraic function up to isomorphism, and give an exponential time algorithm for finding a nontrivial one if it exists. The algorithm involves genus calculations and constructing transcendental generators of fields of genus zero.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Alagar and M. Thanh, Fast polynomial decomposition algorithms, in Proc. EUROCAL85, Springer-Verlag Lect. Notes in Comput. Sci. 204,1985, pp. 150–153.Google Scholar
  2. 2.
    D. R. Barton and R. E. Zipfel, Polynomial decomposition algorithms, J. Symb. Comp., 1 (1985), pp. 159–168.Google Scholar
  3. 3.
    G. A. Bliss, Algebraic Functions, Amer. Math. Soc., 1933.Google Scholar
  4. 4.
    J. Coates, Construction of rational functions on a curve, Proc. Camb. Phil. Soc., 68 (1970), pp. 105–123.Google Scholar
  5. 5.
    M. Dickerson, Polynomial decomposition algorithms for multivariate polynomials, Tech. Rep. TR87-826, Comput. Sci., Cornell Univ., April 1987.Google Scholar
  6. 6.
    R. Hartshorne, Algebraic Geometry, vol. 52 of Graduate Texts in Mathematics, Springer, 1977.Google Scholar
  7. 7.
    M.-D. Huang and D. Ierardi, Efficient algorithms for the effective Riemann-Roch problem and for addition in the Jacobian of a curve, in Proc. 32nd Symp. Found. Comput. Sci., IEEE, November 1991, pp. 678–687Google Scholar
  8. 8.
    D. Ierardi and D. Kozen, Parallel resultant computation, in Synthesis of Parallel Algorithms, J. Reif, ed., Morgan Kaufmann, 1993, pp. 679–720.Google Scholar
  9. 9.
    D. Kozen and S. Landau, Polynomial decomposition algorithms, J. Symb. Comput., 7 (1989), pp. 445–456.Google Scholar
  10. 10.
    B. M. Trager, Integration of Algebraic Functions, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, September 1984.Google Scholar
  11. 11.
    B. L. van der Waerden, Algebra, vol. 2, Frederick Ungar, fifth ed., 1970.Google Scholar
  12. 12.
    -, Algebra, vol. 1, Frederick Ungar, fifth ed., 1970.Google Scholar
  13. 13.
    J. von zur Gathen, Functional decomposition of polynomials: the tame case, 3. Symb. Comput., 9 (1990), pp. 281–299.Google Scholar
  14. 14.
    -Functional decomposition of polynomials: the wild case, J. Symb. Comput., 10 (1990), pp. 437–452.Google Scholar
  15. 15.
    R. E. Zippel, Rational function decomposition, in International Symposium on Symbolic and Algebraic Computation, S. Watt, ed., New York, July 1991, ACM, pp. 1–6.Google Scholar
  16. 16.
    Effective Polynomial Computation, Kluwer Academic Press, Boston, 1993.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Dexter Kozen
    • 1
  • Susan Landau
    • 2
  • Richard Zippel
    • 1
  1. 1.Computer Science DepartmentCornell UniversityIthaca
  2. 2.Computer Science DepartmentUniversity of MassachusettsAmherst

Personalised recommendations