Counting the number of points on elliptic curves over finite fields of characteristic greater than three

  • Frank Lehmann
  • Markus Maurer
  • Volker Müller
  • Victor Shoup
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 877)

Abstract

We present a variant of an algorithm of Oliver Atkin for counting the number of points on an elliptic curve over a finite field. We describe an implementation of this algorithm for prime fields. We report on the use of this implementation to count the number of points on a curve over \(\mathbb{F}\)p, where p is a 375-digit prime.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [At91]
    A.O.L. Atkin: The number of points on an elliptic curve modulo a prime, unpublished manuscriptGoogle Scholar
  2. [BuMü91]
    J. Buchmann, V. Müller: Computing the number of points on an elliptic curve over finite fields, Proceedings of ISSAC 1991, 179–182Google Scholar
  3. [CoMo94]
    J. M. Couveignes, F. Morain: Schoof's algorithm and isogeny cycles, Proceedings of ANTS 1994Google Scholar
  4. [Ko86]
    N. Koblitz: Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987), 203–209Google Scholar
  5. [Mi86]
    V. Miller: Uses of elliptic curves in cryptography, Advances in Cryptology: Proceedings of Crypto '85, Lecture Notes in Computer Science, 218 (1986), Springer-Verlag, 417–426Google Scholar
  6. [Mü94]
    V. Müller: Die Berechnung der Punktanzahl elliptischer Kurven über endlichen Körpern der Charakteristik gröβer 3, Thesis, to be publishedGoogle Scholar
  7. [Mo87]
    P. L. Montgomery: Speeding the Pollard and Elliptic Curve Methods for Factorization, Mathematics of Computation, 48 (1987), 243–264Google Scholar
  8. [Od86]
    A. Odlyzko: Discrete logarithms and their cryptographic significance, Advances in Cryptology: Proceedings of Eurocrypt '84, Lecture Notes in Computer Science, 209 (1985), Springer-Verlag, 224–314Google Scholar
  9. [Li93]
    R. Roth, Th. Setz: LiPS: a system for distributed processing on workstations, University of Saarland, 1993Google Scholar
  10. [Scho85]
    R. Schoof: Elliptic curves over finite fields and the computation of square roots mod p, Mathematics of Computation, 44 (1985), 483–494Google Scholar
  11. [Sho94]
    V. Shoup: Practical computations with large polynomials over finite fields, in preparation (1994).Google Scholar
  12. [Si86]
    J. Silverman: The arithmetic of elliptic curves, Springer-Verlag, 1986Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Frank Lehmann
    • 1
  • Markus Maurer
    • 1
  • Volker Müller
    • 1
  • Victor Shoup
    • 1
  1. 1.FB InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations