Field-induced transport in random media

  • Mustansir Barma
  • Ramakrishna Ramaswamy
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 437)

Abstract

We review the problem of particle transport in random media in the presence of an external field. The random medium is modeled by the infinite cluster above the percolation threshold. The field imposes a preferred direction of motion along which diffusing particles (random walkers are more likely to move than against. Two kinds of traps occur - branches pointing in the direction of the field, and backbends, in which particles must move against the field. For noninteracting particles, the drift velocity is a nonmonotonic function of the biasing field, and the two kinds of traps make the current vanish above a threshold value of the bias. If there is hard-core repulsion between the particles, branches get filled up and eventually cease to be traps. Below the directed percolation threshold, transport is rate-limited by backbends, and the particle current flows predominantly along those paths on the percolation backbone on which the length of every backbend is bounded. The current is a nonmonotonic function of the biasing field. We also consider a different sort of interparticle interaction which leads to levels of particles equalising near backbend bottoms. The motion along a typical path is then described by 'drop-push' dynamics: between backbends, particles drop down, assisted by the field, and push those on the next backbend, possibly leading to a cascade of overflows. Drop-push dynamics has interesting connections with other lattice gas automata, and Monte Carlo simulations show that the model supports kinematic waves and exhibits interesting behaviour of time-dependent correlations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-P. Bouchaud, A. Georges: Phys. Rep. 195, 127 (1990)CrossRefMathSciNetGoogle Scholar
  2. 2.
    J.W. Haus, K.W. Kehr: Phys. Rep. 150, 263 (1987)CrossRefGoogle Scholar
  3. 3.
    S. Havlin, D. Ben Avraham: Adv. Phys. 36, 695 (1987)Google Scholar
  4. 4.
    H. Böttger, V.V. Bryskin: Phys. Stat. Sol. (b) 113, 9 (1982)Google Scholar
  5. 5.
    I.P. Zvyagin: Phys. Stat. Sol. (b) 95, 227 (1979)Google Scholar
  6. 6.
    H. Böttger, V.V. Bryskin: Phys. Stat. Sol. (b) 96, 3219 (1979)Google Scholar
  7. 7.
    H. Böttger, V.V. Bryskin: Phil. Mag. B 42, 297 (1980)Google Scholar
  8. 8.
    Nguyen Van Lien, B.I. Shklovskii: Sol. St. Comm. 38, 99 (1981)CrossRefGoogle Scholar
  9. 9.
    M. Barma, D. Dhar: J. Phys. C 16, 1451 (1983)Google Scholar
  10. 10.
    S.R. White, M. Barma: J. Phys. A 17, 2995 (1984)Google Scholar
  11. 11.
    R. Ramaswamy, M. Barma: J. Phys. A. 20, 2973 (1987)Google Scholar
  12. 12.
    P.G. de Gennes: Le Recherche 7, 916 (1976)Google Scholar
  13. 13.
    H. Böttger, D. Wegener: Phys. Stat. Sol. (b) 121, 413 (1984)Google Scholar
  14. 14.
    M. Barma, R. Ramaswamy: J. Phys. A 19, L605 (1986)Google Scholar
  15. 15.
    V. Balakrishnan: Proc. Solid State Symp., Nagpur, 28C, 77 (1985)Google Scholar
  16. 16.
    H. Kesten, M.V. Kozlov, F. Spitzer: Comp. Math 30, 145 (1975)Google Scholar
  17. 17.
    B. Derrida, Y. Pomeau: Phys. Rev. Lett. 48, 627 (1982)CrossRefGoogle Scholar
  18. 17a.
    B. Derrida: J. Stat. Phys. 31, 433 (1983)CrossRefGoogle Scholar
  19. 18.
    P. Hänggi, P. Talkner, M. Borkovec: Rev. Mod. Phys. 62, 251 (1990)CrossRefGoogle Scholar
  20. 19.
    W. Feller: An Introduction to Probability Theory and its Applications, Vol. 2, (Wiley, New York, 1971)Google Scholar
  21. 20.
    F. Spitzer: Adv. Math., 5, 246 (1970)CrossRefGoogle Scholar
  22. 20a.
    T.M. Liggett: Ann. Prob. 1, 240 (1973), 5, 795 (1977)Google Scholar
  23. 21.
    M. Barma, R. Ramaswamy: J. Stat. Phys., 43, 561 (1986)CrossRefGoogle Scholar
  24. 22.
    B. Derrida, M.R. Evans: J. Physique 3, 311 (1993)CrossRefGoogle Scholar
  25. 22a.
    B. Derrida, M.R. Evans, D. Mukamel: J. Phys. A. 26, 4911 (1993)Google Scholar
  26. 22b.
    B. Derrida, M.R. Evans, V. Hakim, V. Pasquier: J. Phys. A 26, 1493 (1993)Google Scholar
  27. 22c.
    G. Schütz, E. Domany: J. Stat. Phys. 72, 277 (1993)CrossRefGoogle Scholar
  28. 23.
    O. Narayan, D.S. Fisher: preprint (1993)Google Scholar
  29. 24.
    B. Derrida, J.L. Lebowitz, E.R. Speer, H. Spohn: Phys. Rev. Lett. 67, 165 (1991); J. Phys. A. 24, 4805 (1991)CrossRefPubMedGoogle Scholar
  30. 25.
    M. Paczuski, M. Barma, S.N. Majumdar, T. Hwa: Phys. Rev. Lett. 69, 2735 (1992)CrossRefPubMedGoogle Scholar
  31. 26.
    A.L. Toom: in Multicomponent Random Systems, edited by R.L. Dobrushin, Ya.G. Sinai (Marcel Dekker, New York, 1980)Google Scholar
  32. 27.
    C.H. Bennett, G. Grinstein: Phys. Rev. Lett. 55, 657 (1985)CrossRefPubMedGoogle Scholar
  33. 28.
    M.J. Lighthill, G.B. Whitham: Proc. Roy. Soc. A229, 281 (1955); 229, 317 (1955)Google Scholar
  34. 29.
    G.B. Whitham: Linear and Nonlinear Waves (J. Wiley, New York, 1974)Google Scholar
  35. 30.
    S.N. Majumdar, M. Barma: Phys. Rev. B 44, 5306 (1991); Physica A 177, 366 (1991)CrossRefGoogle Scholar
  36. 31.
    P.-M. Binder, M. Paczuski, M. Barma, Phys. Rev. E 49, 1174 (1994)CrossRefGoogle Scholar
  37. 32.
    M. Barma, R. Ramaswamy, in preparationGoogle Scholar
  38. 33.
    P. Bak, C. Tang, K. Wiesenfeld: Phys. Rev. A 38, 364 (1988)CrossRefPubMedGoogle Scholar
  39. 34.
    G. Grinstein: J. Appl. Phys. 69, 5441 (1991)CrossRefGoogle Scholar
  40. 35.
    T. Ohtsuki, T. Keyes: Phys. Rev. Lett. 52, 1177 (1984)CrossRefGoogle Scholar
  41. 36.
    Y. Gefen, I. Goldhirsch: J. Phys. A 18, L1037 (1985)Google Scholar
  42. 37.
    R.B. Pandey: Phys. Rev. B 30, 489 (1984)CrossRefGoogle Scholar
  43. 38.
    E. Seifert, M. Suessenbach: J. Phys. A. 17, L703 (1984)Google Scholar
  44. 39.
    G. Michel: J Phys. A 19 2461 (1986)Google Scholar
  45. 40.
    D. Dhar: J. Phys. A 17, L257 (1984)Google Scholar
  46. 41.
    S. Roux, E. Guyon, Europhys. Lett. 4, 175 (1987)Google Scholar
  47. 42.
    S. Roux, C. Baudet, E. Charlaix, C.D. Mitescu: J. Phys. A 19, L687 (1986)Google Scholar
  48. 43.
    D. Stauffer: J. Phys. A 18, 1827 (1985)Google Scholar
  49. 44.
    M. Przyborowski, M.V. Woerkom: Eur. J. Phys. 6, 242 (1985)CrossRefGoogle Scholar
  50. 44a.
    L. Heupel: J. Stat. Phys. 42, 541 (1986)CrossRefGoogle Scholar
  51. 45.
    H. Harder, A. Bunde, S. Havlin: J. Phys. A 19, L609 (1986)Google Scholar
  52. 46.
    J.-P. Bouchaud, A. Georges: J Phys. A 23, L1003 (1990)Google Scholar
  53. 47.
    A. Bunde, S. Havlin, H.E. Stanley, B. Trus, G.H. Weiss, Phys. Rev. B 34, 8129 (1986)CrossRefGoogle Scholar
  54. 48.
    H Spohn: Large Scale Dynamics of Interacting Particles, (Springer Verlag, Berlin, 1991)Google Scholar
  55. 49.
    J.M. Carlson, J.T. Chayes, E.R. Grannan, G. Swindle: Phys. Rev. Lett. 65, 2547 (1990)CrossRefPubMedGoogle Scholar
  56. 49a.
    J.M. Carlson, E.R. Grannan, G.H. Swindle: Phys. Rev. E 47, 93 (1993)CrossRefGoogle Scholar
  57. 49b.
    J.M. Carlson, E.R. Grannan, C. Singh, G.H. Swindle: Phys. Rev. E 48, 688 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Mustansir Barma
    • 1
  • Ramakrishna Ramaswamy
    • 2
    • 3
  1. 1.Tata Institute of Fundamental ResearchBombayIndia
  2. 2.The Isaac Newton Institute for Mathematical SciencesCambridge UniversityCambridgeUK
  3. 3.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations