Advertisement

Randomness in distribution protocols

Extended Abstract
  • Carlo Blundo
  • Alfredo De Santis
  • Ugo Vaccaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 820)

Abstract

In this paper we give a systematic analysis of the amount of randomness needed by Secret Sharing Schemes and Secure Key Distribution Schemes. We give both upper and lower bounds on the number of random bits needed by secret sharing schemes; such bounds match for several classes of secret sharing schemes. For secure key distribution schemes we provide a lower bound on the amount of randomness needed, thus showing the optimality of a recently proposed key distribution protocol.

Keywords

Access Structure Secret Sharing Scheme Threshold Scheme Broadcast Encryption Randomness Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof Verification and Hardness of Approximation Problems, Proc. 33th IEEE Symp. on Foundations of Computer Science, pp. 14–23, 1992.Google Scholar
  2. 2.
    M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation, Proceedings of 20th Annual ACM Symposium on Theory of Computing,” pp. 1–10, 1988.Google Scholar
  3. 3.
    G. R. Blakley, Safeguarding Cryptographic Keys, Proceedings AFIPS 1979 National Computer Conference, pp.313–317, June 1979.Google Scholar
  4. 4.
    R. Blom, An Optimal Class of Symmetric Key Generation Systems, Advances in Cryptology: Proceedings of Eurocrypt 84, Lecture Notes in Computer Science, Vol. 209, Springer-Verlag, Berlin, 1984, pp. 335–338.Google Scholar
  5. 5.
    G. R. Blakley and C. Meadows, Security of Ramp Schemes, Proceedings of Crypto '84, “Advances in Cryptology”, Lecture Notes in Computer Science, Vol. 196, G. R. Blakley and D. Chaum, Eds., Springer-Verlag, Berlin, pp. 411–431, 1985.Google Scholar
  6. 6.
    C. Blundo, A. Giorgio Gaggia, and D. R. Stinson, On the Dealer's Randomness Required in Secret Sharing Schemes, Technical Report UNL-CSE-93-024, Department of Computer Science and Engineering, University of Nebraska, November 1993.Google Scholar
  7. 7.
    C. Blundo and A. Cresti, Space Requirements for Broadcast Encryption, Technical Report UNL-CSE-94-006, Department of Computer Science and Engineering, University of Nebraska, February 1994.Google Scholar
  8. 8.
    C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro, On the Information Rate of Secret Sharing Schemes, in “Advances in Cryptology — CRYPTO 92”, E. Brickell Ed., Lectures Notes in Computer Science, vol. 740, pp. 149–169, 1993, Springer-Verlag.Google Scholar
  9. 9.
    C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung, Perfectly-Secure Key Distribution for Dynamic Conferences, in “Advances in Cryptology — CRYPTO 92”, E. Brickell Ed., vol. 740, Lectures Notes n Computer Science, pp. 471–486, 1993, Springer-Verlag.Google Scholar
  10. 10.
    C. Blundo, A. De Santis, D. R. Stinson, and U. Vaccaro, Graph Decomposition and Secret Sharing Schemes, in “Advances in Cryptology — Eurocrypt '92”, Lecture Notes in Computer Science, Vol. 658, R. Rueppel Ed., Springer-Verlag, pp. 1–24, 1993, also to appear in J. of Cryptology.Google Scholar
  11. 11.
    C. Blundo, A De Santis, and U. Vaccaro, Efficient Sharing of Many Secrets, Proceedings of STACS '93, Lecture Notes in Computer Science, Vol. 665, P. Enjalbert, A. Finkel, K. W. Wagner Eds., Springer-Verlag, pp. 692–703, 1993.Google Scholar
  12. 12.
    E. F. Brickell and D. M. Davenport, On the Classification of Ideal Secret Sharing Schemes, J. Cryptology, Vol. 4, No. 2, pp. 123–124, 1991.Google Scholar
  13. 13.
    R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, On the Size of Shares for Secret Sharing Schemes, Journal of Cryptology, vol. 6, pp. 157–167, 1993.Google Scholar
  14. 14.
    T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, 1991.Google Scholar
  15. 15.
    M. Franklin and M. Yung, Communication Complexity of Secure Computation, Proceedings of 24th ACM Symposium on Theory of Computing, pp. 699–710, 1992.Google Scholar
  16. 16.
    O. Goldreich, S. Micali, and A. Wigderson, How to Play any Mental Game, Proceedings of 19th ACM Symposium on Theory of Computing, pp. 218–229, 1987.Google Scholar
  17. 17.
    R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, Proceedings of 30th Annual Symposium of Computer Science, pp. 248–255, 1989.Google Scholar
  18. 18.
    E. D. Karnin, J. W. Greene, and M. E. Hellman, On Secret Sharing Systems, IEEE Trans. on Inform. Theory, Vol. IT-29, No. 1, pp. 35–41, Jan. 1983.Google Scholar
  19. 19.
    D.E. Knuth and A.C. Yao, The Complexity of Nonuniform Random Number Generation, in “Algorithms and Complexity”, J.F. Traub Ed., Academic Press, 1976, pp. 357–428.Google Scholar
  20. 20.
    D. Krizanc, D. Peleg, and E. Upfal, A Time-Randomness Tradeoff for Oblivious Routing, Proceedings of 20th Annual ACM Symposium on Theory of Computing, 1988, pp. 93–102.Google Scholar
  21. 21.
    R. J. McEliece and D. Sarwate, On Sharing Secrets and Reed-Solomon Codes, Communications of the ACM, Vol. 24, No. 9, pp. 583–584, September 1981.Google Scholar
  22. 22.
    M. O. Rabin, Efficient Dispersal of Information for Security, Load Balancing and Fault Tolerance, Journal of ACM, Vol. 36 No. 2, pp. 335–348, 1989.Google Scholar
  23. 23.
    A. Shamir, How to Share a Secret, Communications of the ACM, Vol. 22, No. 11, pp. 612–613, Nov. 1979.Google Scholar
  24. 24.
    G. J. Simmons, An Introduction to Shared Secret and/or Shared Control Schemes and Their Application, Contemporary Cryptology, IEEE Press, pp. 441–497, 1991.Google Scholar
  25. 25.
    D. R. Stinson, An Explication of Secret Sharing Schemes, Design, Codes and Cryptography, Vol. 2, pp. 357–390, 1992.Google Scholar
  26. 26.
    D. R. Stinson, Decomposition Constructions for Secret Sharing Schemes, Technical Report UNL-CSE-92-020, Department of Computer Science and Engineering, University of Nebraska, September 1992.Google Scholar
  27. 27.
    D. Zuckerman, Simulating BPP Using a General Weak Random Source, Proc. 32th IEEE Symp. on Foundations of Computer Science, pp. 79–89, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Carlo Blundo
    • 1
  • Alfredo De Santis
    • 1
  • Ugo Vaccaro
    • 1
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissiItaly

Personalised recommendations