Equivalences for fair Kripke structures

  • Adnan Aziz
  • Vigyan Singhal
  • Felice Balarin
  • Robert K. Brayton
  • Alberto L. Sangiovanni-Vincentelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 820)

Abstract

We extend the notion of bisimulation to Kripke structures with fairness. We define equivalences that preserve fairness and are akin to bisimulation. Specifically we define an equivalence and show that it is complete in the sense that it is the coarsest equivalence that preserves the logic CTL* interpreted with respect to the fair paths. We show that the addition of fairness might cause two Kripke structures, which can be distinguished by a CTL* formula, to become indistinguishable by any CTL formula. We also define another weaker equivalence that is the weakest equivalence preserving CTL interpreted on the fair paths. As a consequence of our proof, we also obtain characterizations of states in the fair structure in terms of CTL* and CTL formulae.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aziz, V. Singhal, G. M. Swamy, and R. K. Brayton. Minimizing Interacting Finite State Machines. Technical Report UCB/ERL M93/68, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, September 1993.Google Scholar
  2. 2.
    M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing Finite Kripke Structures in Propositional Temporal Logic. Theoretical Computer Science, 59:115–131, 1988.Google Scholar
  3. 3.
    E. M. Clarke, J. R. Burch, O. Grümberg, D. E. Long, and K. L. McMillan. Automatic Verification of Sequential Circuit Designs. Phil. Trans. of the Royal Society of London, 339:105–120, 1992.Google Scholar
  4. 4.
    E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–263, 1986.Google Scholar
  5. 5.
    E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Formal Models and Semantics, volume B of Handbook of Theoretical Computer Science, pages 996–1072. Elsevier Science, 1990.Google Scholar
  6. 6.
    E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” Revisited: on Branching versus Linear Time Temporal Logic. Journal of the ACM, 33(1):151–178, 1986.Google Scholar
  7. 7.
    Robert J. van Glabbeek. Comparative Concurrency Sematics and Refinement of Actions. PhD thesis, Centrum voor Wiskunde en Informatica, Vrije Universiteit te Amsterdam, Amsterdam, May 1990.Google Scholar
  8. 8.
    Shmuel Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Institute of Science, Rehovot, Israel, March 1989.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Adnan Aziz
    • 1
  • Vigyan Singhal
    • 1
  • Felice Balarin
    • 1
  • Robert K. Brayton
    • 1
  • Alberto L. Sangiovanni-Vincentelli
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations