Advertisement

Competition between ligand centered and charge transfer lowest excited states in bis cyclometalated Rh3+ and Ir3+ complexes

  • Mirco G. Colombo
  • Andreas Hauser
  • Hans U. Güdel
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 171)

Abstract

In this article the results of a detailed optical spectroscopic investigation of a series of related bis-cyclometalated Rh3+ and Ir3+ complexes of the general formula [M(C∩N)2N∩N]+, M=Rh3+, Ir3+ (HC∩N=2-phenylpyridine or 2-(2-thienyl) pyridine; N∩N-2,2′-bipyridine or ethylenediamine) are summarized. The nature of the lowest excited states of the compounds is discussed on the basis of their absorption, luminescence and luminescence line narrowing spectra in solutions and glasses at temperatures from 10 K to 300 K, whereas for the characterization of higher excited states single crystal absorption spectra and excitation spectra of polycrystalline samples are used. In the Rh3+ complexes the lowest excited states correspond to a 3π-π* transition localized on the cyclometalating ligands, whereas in the Ir3+ complexes, depending on the environment, either a 3π-π* or a metal to ligand charge transfer (3MLCT) excited state is lowest in energy. The pronounced solvatochromic and rigidochromic effects of the Ir3+ compounds are responsible for the reversal of the order of the lowest excited states. Mixing between the π-π* and MLCT excited states is reflected in the oscillator strengths, luminescence lifetimes, vibrational structure and zero field splittings. The phenomenon of dual luminescence is attributed to a large inhomogeneous distribution of sites in solution and glasses.

Keywords

Ligand Center Mixed Ligand Complex Zero Field Splitting High Excited State Dual Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Kalyanasundaram K (1982) Coord Chem Rev 46: 159CrossRefGoogle Scholar
  2. 2.
    Krause RA (1987) Struct Bonding 67: 1Google Scholar
  3. 3.
    Juris A, Balzani V, Barigelleti F, Campagna S, Belser P, von Zelewsky A (1987) Coord Chem Rev 84: 85CrossRefGoogle Scholar
  4. 4.
    Krausz E, Ferguson J (1989) Progr Inorg Chem 37: 293Google Scholar
  5. 5.
    Kirch M, Lehn JM, Sauvage JP (1979) Helv Chim Acta 62: 1345CrossRefGoogle Scholar
  6. 6.
    Dehand J, Pfeffer M (1976) Coord Chem Rev 18: 323CrossRefGoogle Scholar
  7. 7.
    Vancheesan S, Kuriacose JC (1983) J Sci Ind Res 42: 132Google Scholar
  8. 8.
    Constable EC (1984) Polyhedron 3: 1037CrossRefGoogle Scholar
  9. 9.
    Newkome GR, Puckett WE, Gupta VG, Kiefer GE (1986) Chem Rev 86: 451CrossRefGoogle Scholar
  10. 10.
    Omae I (1988) Coord Chem Rev 83: 137CrossRefGoogle Scholar
  11. 11.
    Evans DW, Baker GR, Newkome GR (1989) Coord Chem Rev 93: 155CrossRefGoogle Scholar
  12. 12.
    Ryabov AD (1990) Chem Rev 90: 403CrossRefGoogle Scholar
  13. 13.
    Maestri M, Balzani V, Deuschel-Cornioley C, von Zelewsky A (1992) Adv Photochemistry 17: 1Google Scholar
  14. 14.
    Ryabov AD (1992) In: Williams AF, Floriani C, Merbach AE (eds) Pespectives in coordination chemistry. Helvetica Chimica Acta, Basel, p 271Google Scholar
  15. 15.
    Nonoyama M, Yamasaki K (1971) Inorg Nucl Chem Letters 7: 943CrossRefGoogle Scholar
  16. 16.
    Nonoyama M (1974) Bull Chem Soc Jpn 47: 767Google Scholar
  17. 17.
    Nonoyama M (1979) Bull Chem Soc Jpn 52: 3749Google Scholar
  18. 18.
    Sprouse S, King KA, Spellane PJ, Watts RJ (1984) J Am Chem Soc 106: 6647CrossRefGoogle Scholar
  19. 19.
    King KA, Finlayson MF, Spellane PJ, Watts RJ (1984) Sci Pap Inst Phys Chem Res 78: 97Google Scholar
  20. 20.
    Mäder U, Jenny T, von Zelewsky A (1986) Helv. Chim. Acta 69: 1085CrossRefGoogle Scholar
  21. 21.
    Ohsawa Y, Sprouse S, King KA, DeArmond MK, Hanck KW, Watts RJ (1987) J Phys Chem 91: 1047CrossRefGoogle Scholar
  22. 22.
    Garces FO, King KA, Watts RJ (1987) Inorg Chem 27: 3464CrossRefGoogle Scholar
  23. 23.
    Garces FO, Watts RJ (1990) Inorg Chem 29: 583CrossRefGoogle Scholar
  24. 24.
    van Diemen JH, Haasnoot JG, Hage R, Reedijk J, Vos JG, Wang R (1991) Inorg Chem 30: 4038CrossRefGoogle Scholar
  25. 25.
    Maeder U, von Zelewsky A, Stoeckli-Evans H (1992) Helv Chim Acta 175: 1320CrossRefGoogle Scholar
  26. 26.
    Colombo MG, Güdel HU (1993) Inorg Chem 32: 3081CrossRefGoogle Scholar
  27. 27.
    Nonoyama M (1985) Polyhedron 4: 765CrossRefGoogle Scholar
  28. 28.
    Constable EC, Leese TA, Tocher DA (1990) Polyhedron 9: 1613CrossRefGoogle Scholar
  29. 29.
    Watts RJ, Harrington JS, Van Houten J (1977) J Am Chem Soc 99: 2179CrossRefGoogle Scholar
  30. 30.
    Wickramasinghe WA, Bird PH, Serpone N (1981) J Chem Soc Chem Commun 1284Google Scholar
  31. 31.
    Spellane PJ, Watts RJ, Curtis C (1983) Inorg Chem 22: 4060CrossRefGoogle Scholar
  32. 32.
    Nord G, Hazell AC, Hazell RG, Farver O (1983) Inorg Chem 22: 3429CrossRefGoogle Scholar
  33. 33.
    King KA, Watts RJ (1987) Am Chem Soc 109: 1589CrossRefGoogle Scholar
  34. 34.
    King KA, Spellane PJ, Watts RJ (1985) J Am Chem Soc 107: 1431CrossRefGoogle Scholar
  35. 35.
    Dedeian K, Djurovich PI, Garces FO, Carlson G, Watts RJ (1991) Inorg Chem 30: 1685CrossRefGoogle Scholar
  36. 36.
    Drews H, Müller J, Quao K (1992) In: Nitrogen ligands in organometallic chemistry and homogeneous catalysis. Euchem Conference, Alghero, Italy, May 10–15, 1992Google Scholar
  37. 37.
    Colombo MG, Brunold TC, Riedener T, Güdel HU, Förtsch M, Bürgi HB, Inorg Chem, in press.Google Scholar
  38. 38.
    Frei G, Zilian A, Raselli A, Güdel HU, Bürgi HB (1992) Inorg Chem 31: 4766CrossRefGoogle Scholar
  39. 39.
    Maestri M, Sandrini D, Balzani V, Maeder U, von Zelewsky A (1987) Inorg Chem 26: 1323CrossRefGoogle Scholar
  40. 40.
    Colombo MG, Zilian A, Güdel HU (1990) J Am Chem Soc 112: 4581CrossRefGoogle Scholar
  41. 41.
    Colombo MG, Zilian A, Güdel HU (1991) J Lumin 48 & 49: 549Google Scholar
  42. 42.
    Zilian A, Güdel HU (1991) Coord Chem Rev 111: 33CrossRefGoogle Scholar
  43. 43.
    Zilian A, Güdel HU (1992) Inorg Chem 31: 830CrossRefGoogle Scholar
  44. 44.
    Ichimura K, Kobayashi T, King KA, Watts RJ (1987) J Phys Chem 91: 6104CrossRefGoogle Scholar
  45. 45.
    Colombo MG, Hauser A, Güdel HU (1993) Inorg Chem 32: 3088CrossRefGoogle Scholar
  46. 46.
    Colombo MG, unpublished resultsGoogle Scholar
  47. 47.
    McRae EG (1957) J Phys Chem 61: 562CrossRefGoogle Scholar
  48. 48.
    Marcus RA (1963) J Chem Phys 39: 1734CrossRefGoogle Scholar
  49. 49.
    Marcus RA (1965) J Chem Phys 43: 1261CrossRefGoogle Scholar
  50. 50.
    Wilde AP, Watts RJ (1991) J Phys Chem 95: 622CrossRefGoogle Scholar
  51. 51.
    Personov RI (1983) In: Agranovich VM, Hochstrasser RM (eds) Spectroscopy and excitation dynamics of condensed molecular systems. North Holland, Amsterdam, p 555Google Scholar
  52. 52.
    Verwey JWM, Imbusch GF, Blasse G (1989) J Phys Chem Solids 50: 813CrossRefGoogle Scholar
  53. 53.
    Riesen H, Krausz ER (1993) Comments Inorg Chem, 14: 323Google Scholar
  54. 54.
    Riesen H, Krausz E, Puza M (1988) Chem Phys Lett 151: 65CrossRefGoogle Scholar
  55. 55.
    Zilian A, Mäder U, von Zelewsky A, Güdel HU (1989) J Am Chem Soc 111: 3855CrossRefGoogle Scholar
  56. 56.
    Zilian A, Colombo MG, Güdel HU (1990) J Lumin 45: 111CrossRefGoogle Scholar
  57. 57.
    Zilian A, Frei G, Güdel HU, (1993) Chem Phys 173: 513CrossRefGoogle Scholar
  58. 58.
    Gropper H, Dörr (1963) Ber Bun Ges 67: 46Google Scholar
  59. 59.
    DeArmond MK, Huang WL, Carlin CM (1979) Inorg Chem 18: 3388CrossRefGoogle Scholar
  60. 60.
    Imbusch GF (1987) In: Lumb MD (ed) Luminescence spectroscopy. Academic, London, p 1Google Scholar
  61. 61.
    McGlynn SP, Azumi T, Kinoshita M (1969) In: Molecular spectroscopy of the triplet state. Prentice-Hall, Englewood Cliffs, p 17Google Scholar
  62. 62.
    Frei G (1990) Diploma thesis. University of Bern, BernGoogle Scholar
  63. 63.
    Zilian A (unpublished results)Google Scholar
  64. 64.
    Komada Y, Yamauchi S, Hirota N (1986) J Phys Chem 90: 6425CrossRefGoogle Scholar
  65. 65.
    Nakamoto K (1986) In: Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York, p 208Google Scholar
  66. 66.
    Strommen DP, Malick PK, Danzer GD, Lumpkin RS, Kincaid JR (1990) J Phys Chem 94: 1357CrossRefGoogle Scholar
  67. 67.
    Small GJ (1983) In: Agranovich VM, Hochstrasser RM (eds) Spectroscopy and excitation dynamics of condensed molecular systems. North Holland, Amsterdam, p 515Google Scholar
  68. 68.
    Riesen H, Krausz E, Zilian A, Güdel HU (1991) Chem Phys Lett 182: 271CrossRefGoogle Scholar
  69. 69.
    Zilian A, Güdel HU (1992) J Lumin 51: 237CrossRefGoogle Scholar
  70. 70.
    Giesbergen CPM, Sitters R, Frei G, Zilian A, Güdel HU, Glasbeek M (1992) Chem Phys Lett 197: 451CrossRefGoogle Scholar
  71. 71.
    Westra J, Glasbeek M (1991) Chem Phys Lett 180: 41CrossRefGoogle Scholar
  72. 72.
    Riesen H, Krausz E (1992) J Lumin 53: 263CrossRefGoogle Scholar
  73. 73.
    Demas JN, Crosby GA (1970) J Am Chem Soc 97: 7262Google Scholar
  74. 74.
    Demas JN, Crosby GA (1971) J Am Chem Soc 93: 2841CrossRefGoogle Scholar
  75. 75.
    Watts RJ, White TP, Griffith BG (1975) J Am Chem Soc 97: 6914CrossRefGoogle Scholar
  76. 76.
    King KA, Watts RJ (1986) J Am Chem Soc 109: 1589CrossRefGoogle Scholar
  77. 77.
    Wilde AP, King KA, Watts RJ (1991) J Phys Chem 95: 629CrossRefGoogle Scholar
  78. 78.
    Henderson B, Imbush GF (1989) In: Optical spectroscopy of inorganic solids, Oxford University Press, OxfordGoogle Scholar
  79. 79.
    Halper W, DeArmond MK (1972) J Lumin 5: 225CrossRefGoogle Scholar
  80. 80.
    Crosby GA, Elfring WH Jr (1976) J Phys Chem 80: 2206CrossRefGoogle Scholar
  81. 81.
    Krausz E, Higgins J, Riesen H, Inorg Chem (submitted)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Mirco G. Colombo
    • 1
  • Andreas Hauser
    • 1
  • Hans U. Güdel
    • 1
  1. 1.Institut für Anorganische, Analytische und Physikalische ChemieUniversität BernBern 9Switzerland

Personalised recommendations