Advertisement

Randomness as an invariant for number representations

  • C. Calude
  • H. Jürgensen
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 812)

Abstract

We show that the usual positional representations of a real number are either random, in the sense of Martin-Löf, for all bases or not so for any base. Thus, randomness is an invariant of number representations. All our proofs are constructive.

Keywords

Random Sequence Binary Sequence Recursive Function Infinite Sequence Irrational Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    É. Borel: Les Probabilités Dénombrables et leurs Applications Arithmétiques. Rend. Circ. Mat. Palermo 27 (1909), 247–271.Google Scholar
  2. 2.
    É. Borel: Leçons sur la Théorie des Fonctions. Gauthier-Villars, Paris, 2nd edition, 1914.Google Scholar
  3. 3.
    U. Brandt: Number Representations and Registers. J. Inform. Process. Cybernetic, EIK 28 (1992), 197–212.Google Scholar
  4. 4.
    C. Calude, I. Chiţescu: On Per Martin-Löf Random Sequences. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) 26 (1982), 217–221.Google Scholar
  5. 5.
    C. Calude: Theories of Computational Complexities. North-Holland, Amsterdam, 1988.Google Scholar
  6. 6.
    C. Calude, I. Chiţescu: Random Sequences: Some Topological and Measure-Theoretical Properties. An. Univ. Bucureşti, Mat.-Inf. 2 (1988), 27–32.Google Scholar
  7. 7.
    C. Calude, I. Chiţescu: A Combinatorial Characterization of P. Martin-Löf Tests. Internat. J. Comput. Math. 17 (1988), 53–64.Google Scholar
  8. 8.
    C. Calude, I. Chiţescu: Qualitative Properties of P. Martin-Löf Random Sequences. Boll. Unione Mat. Ital. (7) 3-B (1989), 229–240.Google Scholar
  9. 9.
    C. Calude, H. Jürgensen: Randomness Preserving Transformations. Manuscript, November, 1993, in Preparation.Google Scholar
  10. 10.
    C. Calude: Borel Normality and Algorithmic Randomness. In G. Rozenberg, A. Salomaa (eds.), Developments in Language Theory, World Scientific, Singapore, 1994, in Press.Google Scholar
  11. 11.
    U.C. Calude: Information and Randomness: An Algorithmic Perspective. Springer-Verlag, Berlin, 1994, in Press.Google Scholar
  12. 12.
    C. Calude, H. Jürgensen: Coding without Tears. Manuscript, January, 1994, in Preparation.Google Scholar
  13. 13.
    G. J. Chaitin: On the Length of Programs for Computing Finite Binary Sequences: Statistical Considerations. J. Assoc. Comput. Mach. 16 (1969), 145–159. Reprinted in [15], 245–260.Google Scholar
  14. 14.
    G. J. Chaitin: Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987; 3rd Printing 1990.Google Scholar
  15. 15.
    G. J. Chaitin: Information, Randomness and Incompleteness. Papers on Algorithmic Information Theory. World Scientific, Singapore, 1987; 2nd Edition, 1990.Google Scholar
  16. 16.
    G. J. Chaitin: Information-Theoretic Incompleteness. World Scientific, Singapore, 1992.Google Scholar
  17. 17.
    G. J. Chaitin: Randomness in Arithmetic and the Decline and Fall of Reductionism in Pure Mathematics. EATCS Bull. 50 (1993), 314–328.Google Scholar
  18. 18.
    D. G. Champernowne: The Construction of Decimals Normal in the Scale of Ten. J. London Math. Soc. 8 (1933), 254–260.Google Scholar
  19. 19.
    T. M. Cover, P. Gács, R. M. Gray: Kolomogorov's Contributions to Information Theory and Algorithmic Complexity. The Annals of Probability 17 (1989), 840–855.Google Scholar
  20. 20.
    K. Culik, A. Salomaa: Ambiguity and Decision Problems Concerning Number Systems. Inform. and Control 56 (1984), 139–153.Google Scholar
  21. 21.
    C. Dellacherie: Nombres au hazard. De Borel à Martin-Loef. Gazette des Math., Soc. Math. France 11 (1978), 23–58.Google Scholar
  22. 22.
    W. Feller: An Introduction to Probability Theory and Its Aplications. Vol. 1, Chapman & Hall, London, John Wiley & Sons, New York, 2nd edition, 1958.Google Scholar
  23. 23.
    P. Gács (P. Gač): On the Symmetry of Algorithmic Information. Dokl. Akad. Nauk SSSR 218, 6 (1974) 1265–1267, in Russian. English Translation: Soviet Math. Dokl. 15 (1974), 1477–1480.Google Scholar
  24. 24.
    P. Gács: Komplexität und Zufälligkeit. Dissertation, Frankfurt, 1978.Google Scholar
  25. 25.
    P. Gács: Exact Expressions for Some Randomness Tests. Zeitschr. f. math. Logik und Grundlagen d. Math. 26 (1980), 385–394.Google Scholar
  26. 26.
    P. Gács: Every Sequence is Reducible to a Random One. Inform, and Control 70 (1986), 186–192.Google Scholar
  27. 27.
    P. Gács: Lecture Notes on Descriptional Complexity and Randomness. Boston University, 1988, 62 pp., Unpublished Manuscript.Google Scholar
  28. 28.
    P. Gács: Personal Communication; Especially also Electronic Mail, November 2 and 3, 1993.Google Scholar
  29. 29.
    G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. Clarendon Press, Oxford, 5th Edition, 1979.Google Scholar
  30. 30.
    J. Honkala: On Unambiguous Number Systems with a Prime Power Base. Acta Cybernetica 10 (1992), 155–163.Google Scholar
  31. 31.
    H. Jürgensen, H. J. Shyr, G. Thierrin: Disjunctive ω-Languages. EIK 19 (1983), 267–278.Google Scholar
  32. 32.
    H. Jürgensen, G. Thierrin: Some structural properties of ω-languages. Сборник, XIII Национална Младежка Школа С Международно Участие “Приложение На Математиката В Техниката. (13th National School with International Participation “Applications of Mathematics in Technology”). Sofia, 1988, 56–63.Google Scholar
  33. 33.
    D. E. Knuth: The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Addison-Wesley, Reading, Ma., 2nd Edition, 1971.Google Scholar
  34. 34.
    A. N. Kolmogorov: Three Approaches for Defining the Concept of ‘Information Quantity.’ Problemy Peredachi Informatsii 1 (1965), 3–11 (in Russian).Google Scholar
  35. 35.
    L. Kuipers, H. Niederreiter: Uniform Distribution of Sequences. John-Wiley & Sons, New York, 1974.Google Scholar
  36. 36.
    S. Labhalla, H. Lombardi: Répresentations des Nombres Réels par Développements en Base Entière et Complexité. Theoret. Comput. Sci. 88 (1991), 1771–182.Google Scholar
  37. 37.
    L. A. Levin: Laws of Information Conservation (Nongrowth) and Aspects of the Foundation of Probability Theory. Problemy Peredachi Informatsii 10, 3 (1974), 30–35, in Russian. English Translation: Problems of Information Transmission 10 (1976), 206–210.Google Scholar
  38. 38.
    L. A. Levin: Uniform Tests of Randomness. Dokl. Akad. Nauk SSSR 227 (1976), 33–35, in Russian. English Translation: Soviet Math. Dokl. 17 (1976), 337–340.Google Scholar
  39. 39.
    L. A. Levin: Randomness Conservation Inequalities; Information and Independence in Mathematical Theories. Inform. and Control 61 (1984), 15–37.Google Scholar
  40. 40.
    M. Li, P. M. Vitányi: Kolmogorov Complexity and Its Applications. In J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Vol. A, North-Holland, Amsterdam, MIT Press, Boston, 1990, 187–254.Google Scholar
  41. 41.
    M. Li: Personal Communication; Especially also Electronic Mail, January 21, 1993.Google Scholar
  42. 42.
    M. Li, P. M. Vitányi: An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, Berlin, 1993.Google Scholar
  43. 43.
    P. Martin-Löf: The Defintion of Random Sequences. Inform, and Control 6 (1966), 602–619.Google Scholar
  44. 44.
    M. Mendes France: Suite de Nombres au Hasard (d'après Knuth). Séminaire de Théorie des Nombres, Université de Bordeaux I, 1974–1975, Exposé 6, 1–11.Google Scholar
  45. 45.
    R. von Mises: Probability, Statistics and Truth. G. Allen and Unwin Ltd., London, Macmillan, New York, 2nd Revised English Edition Prepared by Hilda Geiringer, 1961.Google Scholar
  46. 46.
    R. von Mises: Mathematical Theory of Probability and Statistics. Edited and complemented by Hilda Geiringer, Academic Press, New York, 1964.Google Scholar
  47. 47.
    I. Niven, H. S. Zuckerman: On the Definition of Normal Numbers. Pacific J. Math. 1 (1951), 103–110.Google Scholar
  48. 48.
    C. P. Schnorr: Zufälligkeit und Wahrscheinlichkeit. Lecture Notes Math. Vol. 218, Springer-Verlag, Berlin, 1981.Google Scholar
  49. 49.
    R. M. Solovay: Draft of a Paper (or Series of Papers) on Chaitin's Work ... Done for the Most Part during the Period of Sept.–Dec. 1974, Unpublished Manuscript, Thomas J. Watson Research Center, Yorktown Heights, New York, May, 1975, 215 pp.Google Scholar
  50. 50.
    A. Szilard: Personal Communication, November, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • C. Calude
    • 1
  • H. Jürgensen
    • 2
  1. 1.Computer Science DepartmentThe University of AucklandAucklandNew Zealand
  2. 2.Department of Computer ScienceThe University of Western OntarioLondonCanada

Personalised recommendations