Advertisement

A rewriting of Fife's theorem about overlap-free words

  • J. Berstel
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 812)

Abstract

The purpose of this expository paper is to present a self-contained proof of a famous theorem of Fife that gives a full description of the set of infinite overlap-free words over a binary alphabet. Fife's characterization consists in a parameterization of these infinite words by a set of infinite words over a ternary alphabet. The result is that the latter is a regular set. The proof is by the explicit construction of the minimal automaton, obtained by the method of left quotients.

Keywords

Finite Automaton Canonical Decomposition Binary Word Formal Language Theory Infinite Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Carpi, Overlap-free words and finite automata, Theoret. Comput. Sci.115 (1993), 243–260.Google Scholar
  2. [2]
    J. Cassaigne, Counting overlap-free binary words, in: STACS'93, Enjalbert, Finkel, Wagner (eds), Lect. Notes Comp. Sci., 665, Springer-Verlag, 1993, 216–225.Google Scholar
  3. [3]
    K. Culik II and A. Salomaa, On infinite words obtained by iterating morphisms, Theoret. Comput. Sci.19 (1982), 29–38.Google Scholar
  4. [4]
    E. D. Fife, Binary sequences which contain no BBb, Trans. Amer. Math. Soc.261 (1980), 115–136.Google Scholar
  5. [5]
    T. Harju, On cyclically overlap-free words in binary alphabets, The Book of L, Springer-Verlag, 1986, 123–130.Google Scholar
  6. [6]
    G.A. Hedlund, Remarks on the work of Axel Thue, Nordisk Mat. Tidskr.15 (1967), 148–150.Google Scholar
  7. [7]
    R. Kfoury, A linear time algorithm to decide whether a binary word contains an overlap, Theoret. Inform. Appl.22 (1988), 135–145.Google Scholar
  8. [8]
    Y. Kobayashi, Enumeration of irreductible binary words, Discrete Appl. Math.20 (1988), 221–232.Google Scholar
  9. [9]
    M. Lothaire, Combinatorics on Words, Addison-Wesley, 1983.Google Scholar
  10. [10]
    M. Morse, Recurrent geodesics on a surface of negative curvature, Transactions Amer. Math. Soc.22 (1921), 84–100.Google Scholar
  11. [11]
    A. Restivo, S. Salemi, Overlap-free words on two symbols, in: Automata on infinite words, Nivat, Perrin (eds), Lect. Notes Comp. Sci., 192, Springer-Verlag, 1985, 198–206.Google Scholar
  12. [12]
    G. Rozenberg, A. Salomaa, The Mathematical Theory of L-Systems, Academic Press, 1980.Google Scholar
  13. [13]
    A. Salomaa, Morphisms on free monoids and language theory, in Formal Language Theory: Perspectives and Open Problems, pp. 141–166, Academic Press, 1980.Google Scholar
  14. [14]
    A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, 1981.Google Scholar
  15. [15]
    R. Shelton, R. Soni, Chains and fixing blocks in irreducible sequences, Discrete Math.54 (1985), 93–99.Google Scholar
  16. [16]
    A. Thue, Über unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 1906, Nr. 7.Google Scholar
  17. [17]
    A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 1912, Nr. 10.Google Scholar
  18. [18]
    A. Thue, Selected Mathematical Papers, edited by T. Nagell, A. Selberg, S. Selberg, K. Thalberg, Universitetsforlaget, Oslo 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. Berstel
    • 1
  1. 1.LITP, Institut Blaise PascalUniversité Pierre et Marie CurieParis Cedex 05

Personalised recommendations