Query primitives for tree-structured data

  • Pekka Kilpeläinen
  • Heikki Mannila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 807)


We consider primitives for retrieving information from trees. We define a sequence of tree matching operations based on a classification of properties preserved in matching. We analyze the time complexity of the primitives. The addition of logical variables to the primitives is also considered, and its effects on the complexities is studied.


Target Node Logical Variable Parse Tree Inclusion Problem Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.Google Scholar
  2. 2.
    D. Angluin. Finding patterns common to a set of strings. Journal of Computer and System Sciences, 21:46–62, 1980.Google Scholar
  3. 3.
    F. Bancilhon and P. Richard. Managing texts and facts in a mixed data base environment. In G. Gardarin and E. Gelenbe, editors, New Applications of Data Bases, pages 87–107. Academic Press, 1984.Google Scholar
  4. 4.
    D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. Journal of Symbolic Computation, 3(1&2):203–216, February/April 1987.Google Scholar
  5. 5.
    G. Coray, R. Ingold, and C. Vanoirbeek. Formatting structured documents: Batch versus interactive. In J. C. van Vliet, editor, Text Processing and Document Manipulation, pages 154–170. Cambridge University Press, 1986.Google Scholar
  6. 6.
    M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matching. In Proc. of the Symposium on Foundations of Computer Science (FOCS'90), pages 145–150, 1990.Google Scholar
  7. 7.
    P. Dublish. Some comments on the subtree isomorphism problem for ordered trees. Information Processing Letters, 36:273–275, 1990.Google Scholar
  8. 8.
    M. J. Fischer and M. S. Paterson. String-matching and other products. In Complexity of Computation, pages 113–125. SIAM-AMS, 1974.Google Scholar
  9. 9.
    R. Furuta, V. Quint, and J. André. Interactively editing structured documents. Electronic Publishing, 1(1):19–44, 1988.Google Scholar
  10. 10.
    M. R. Garey and D. S. Johnson. “Strong” NP-completeness results: Motivation, examples and implications. Journal of the ACM, 25(3):499–508, July 1978.Google Scholar
  11. 11.
    M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Company, 1979.Google Scholar
  12. 12.
    G. H. Gonnet and F. Wm. Tompa. Mind your grammar-a new approach to text databases. In Proc. of the Conference on Very Large Data Bases (VLDB'87), pages 339–346, 1987.Google Scholar
  13. 13.
    R. Grossi. A note on the subtree isomorphism for ordered trees and related problems. Information Processing Letters, 39:81–84, 1991.Google Scholar
  14. 14.
    C. M. Hoffman and M. J. O'Donnell. Pattern matching in trees. Journal of the ACM, 29(1):68–95, January 1982.Google Scholar
  15. 15.
    J. E. Hopcroft and R. M. Karp. An n 5/2 algorithm for maximum matching in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, December 1973.Google Scholar
  16. 16.
    P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text Databases. PhD thesis, University of Helsinki, Dept. of Comp. Science, November 1992.Google Scholar
  17. 17.
    P. Kilpeläinen, G. Lindén, H. Mannila, and E. Nikunen. A structured document database system. In R. Furuta, editor, EP90 — Proceedings of the International Conference on Electronic Publishing, Document Manipulation & Typography, The Cambridge Series on Electronic Publishing. Cambridge University Press, 1990.Google Scholar
  18. 18.
    P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. Report A-1991-4, University of Helsinki, Dept. of Comp. Science, August 1991. To appear in SIAM Journal on Computing.Google Scholar
  19. 19.
    P. Kilpeläinen and H. Mannila. The tree inclusion problem. In S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT'91, Proc. of the International Joint Conference on the Theory and Practice of Software Development, Vol. 1: Colloqium on Trees in Algebra and Programming (CAAP'91), pages 202–214. Springer-Verlag, 1991.Google Scholar
  20. 20.
    P. Kilpeläinen and H. Mannila. Grammatical tree matching. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Proceedings of the Third Annual Symposium on Combinatorial Pattern Matching, pages 162–174. Springer-Verlag, 1992.Google Scholar
  21. 21.
    S. R. Kosaraju. Efficient tree pattern matching. In Proc. of the Symposium on Foundations of Computer Science (FOCS'89), pages 178–183, 1989.Google Scholar
  22. 22.
    J. Matoušek and R. Thomas. On the complexity of finding iso-and other morphisms for partial k-trees. Discrete Mathematics, 108(1–3):343–364, October 1992.Google Scholar
  23. 23.
    D. W. Matula. An algorithm for subtree identification. SIAM Rev., 10:273–274, 1968. Abstract.Google Scholar
  24. 24.
    R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matching in trees. Journal of the ACM, 39(2):295–316, April 1992.Google Scholar
  25. 25.
    S. W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM Journal on Computing, 6(4):730–732, December 1977.Google Scholar
  26. 26.
    J.-M. Steyaert and P. Flajolet. Patterns and pattern-matching in trees: An analysis. Information and Control, 58:19–58, 1983.Google Scholar
  27. 27.
    R. M. Verma. Strings, trees, and patterns. Information Processing Letters, 41:157–161, March 1992.Google Scholar
  28. 28.
    R. M. Verma and I. V. Ramakrishnan. Some complexity theoretic aspects of AC rewriting. In B. Monien and R. Cori, editors, STACS89 — 6th Annual Symposium on Theoretical Aspects of Computer Science, pages 407–420. Springer-Verlag, 1989.Google Scholar
  29. 29.
    K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing, 18(6):1245–1262, December 1989.Google Scholar
  30. 30.
    K. Zhang, D. Shasha, and J. T.-L. Wang. Fast serial and parallel algorithms for approximate tree matching with VLDC's. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Proceedings of the Third Annual Symposium on Combinatorial Pattern Matching, pages 151–161. Springer-Verlag, 1992.Google Scholar
  31. 31.
    K. Zhang, R. Statman, and D. Shasha. On the editing distance between unordered labeled trees. Information Processing Letters, 42(3):133–139, May 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Pekka Kilpeläinen
    • 1
  • Heikki Mannila
    • 2
  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Department of Computer Science, University of HelsinkiUniversity of HelsinkiFinland

Personalised recommendations