Unit route upper bound for string-matching on hypercube

  • L. Lestré
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 807)


We give here an algorithm of string matching on an hypercube with constant memory in time [log n]+5/2[log m]+5 counted in number of unit routes and with a constant number of operations by communication. This algorithm is very close to the lower bound of the problem for this architecture. It uses 2nm processors and it is based on combinatorial properties on the hypercube network such as the constant time shift of line for a length power of two and constructions of arrays.


String Match Left Shift Initial Line Constant Memory Basic Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.S. Boyer et J.S. Moore. A fast string searching algorithm. Comm of the ACM, 1977.Google Scholar
  2. 2.
    D. Breslauer et Z. Galil. An optimal O(log log n) parallel string matching algorithm. SIAM J. Comput, 1990.Google Scholar
  3. 3.
    D. Breslauer et Z. Galil. An lower bound for parallel string matching. In Proc. of the 23rd Ann ACM Symp on theory of computing, 1991.Google Scholar
  4. 4.
    KL. Chung. A randomized parallel algorithm for string matching on hypercube. Pattern Recognition, 1992.Google Scholar
  5. 5.
    M. Crochemore et D. Perrin. Two-Way String-Matching. Journal of the ACM, Juillet 91.Google Scholar
  6. 6.
    R. Cypher et C.G. Plaxton. Deterministic sorting in nearly logarithmic time on the hypercube and related computers. Proc of the 22nd Ann Symp on theory of computing, 1990.Google Scholar
  7. 7.
    Z. Galil. Optimal parallel algorithms for string matching. Inform. and Control, 1985.Google Scholar
  8. 8.
    Z. Galil. A constant-time Optimal Parallel string-matching algorithm. Proc of the 24th ACM symp. on Theory of Comput., 1992.Google Scholar
  9. 9.
    A. Gibbons et W. Rytter. Efficient parallel algorithms. Cambridge University Press, 1988.Google Scholar
  10. 10.
    R.M. Karp et M.O. Rabin. Efficient randomized pattern matching algorithms. IBM J. Res. Dev., 1987.Google Scholar
  11. 11.
    D.E. Knuth, J.H. Morris et U.R. Pratt. Fast Pattern Matching in strings. SIAM J. Comput, 1977.Google Scholar
  12. 12.
    D. Nassimi et S. Sahni. Data broadcasting in SIMD computers. IEEE Trans. on Comp, 1981.Google Scholar
  13. 13.
    S. Ranka et S. Sahni. Hypercube Algorithms. Springer-Verlag, 1990.Google Scholar
  14. 14.
    U. Vishkin. Optimal parallel pattern matching in strings. ICALP, 1985.Google Scholar
  15. 15.
    A. Wu. Embedding of tree networks into hypercubes. J. of Parallel and Distributed Computing, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • L. Lestré
    • 1
  1. 1.L.I.T.PUniversité Paris 7Paris Cedex 05

Personalised recommendations