Advertisement

Mesh decomposition and communication procedures for finite element applications on the Connection Machine CM-5 system

  • Zdenek Johan
  • Kapil K. Mathur
  • S. Lennart Johnsson
  • Thomas J. R. Hughes
Doain Decomposion in Engineering
Part of the Lecture Notes in Computer Science book series (LNCS, volume 797)

Abstract

The objective of this paper is to analyze the impact of data mapping strategies on the performance of finite element applications. First, we describe a parallel mesh decomposition algorithm based on recursive spectral bisection used to partition the mesh into element blocks. A simple heuristic algorithm then renumbers the mesh nodes. Large three-dimensional meshes demonstrate the efficiency of those mapping strategies and assess the performance of a finite element program for fluid dynamics.

Keywords

Computational Fluid Dynamic Mesh Node Processing Node Finite Element Program Location Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pothen, A., Simon, H.D., and Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11 (1990) 430–452Google Scholar
  2. 2.
    Simon, H.D.: Partitioning of unstructured problems for parallel processing. Comput. Systems Engrg. 2 (1991) 135–148Google Scholar
  3. 3.
    CM Fortran Language Reference Manual, Version 2.1 (Thinking Machines Corporation, 1994)Google Scholar
  4. 4.
    VU Programmer's Handbook, CMost Version 7.2 (Thinking Machines Corporation, 1993)Google Scholar
  5. 5.
    Johan, Z., Mathur, K.K., Johnsson, S.L., and Hughes, T.J.R.: An efficient communication strategy for finite element methods on the Connection Machine CM-5 system. Comput. Methods Appl. Mech. Engrg. (in press)Google Scholar
  6. 6.
    Shakib, F., Hughes, T.J.R., and Johan, Z.: A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 89 (1991) 141–219Google Scholar
  7. 7.
    Johan, Z., Hughes, T.J.R., Mathur, K.K., and Johnsson, S.L.: A data parallel finite element method for computational fluid dynamics on the Connection Machine system. Comput. Methods Appl. Mech. Engrg. 99 (1992) 113–134Google Scholar
  8. 8.
    Hughes, T.J.R., Franca, L.P., and Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173–189Google Scholar
  9. 9.
    Johnson, C., Szepessy, A., and Hansbo, P.: On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comp. 54 (1990) 107–129Google Scholar
  10. 10.
    CMSSL for CM Fortran: CM-5 Edition, Version 3.1 (Thinking Machines Corporation, 1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Zdenek Johan
    • 1
  • Kapil K. Mathur
    • 1
  • S. Lennart Johnsson
    • 1
    • 3
  • Thomas J. R. Hughes
    • 2
  1. 1.Thinking Machines CorporationCambridgeUSA
  2. 2.Division of Applied MechanicsStanford UniversityStanfordUSA
  3. 3.Division of Applied SciencesHarvard UniversityUSA

Personalised recommendations