Advertisement

A computer-checked verification of Milner's scheduler

  • Henri KorverEmail author
  • Jan SpringintveldEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 789)

Abstract

We present an equational verification of Milner's scheduler, which we checked by computer. To our knowledge, this is the first time that the scheduler is proof-checked for a general number n of scheduled processes.

Keywords

Proof System Proof Theory Process Algebra Correctness Proof Proof Assistant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer Science 18. Cambridge University Press, 1990.Google Scholar
  2. 2.
    M. Bezem and J.F. Groote. A formal verification of the alternating bit protocol in the calculus of constructions. Technical Report Logic Group Preprint Series No. 88, Utrecht University, 1993.Google Scholar
  3. 3.
    T. Coquand and G. Huet. The calculus of constructions. Information and Control, 76:95–120, 1988.Google Scholar
  4. 4.
    G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and B. Werner. The Coq proof assistant user's guide. Version 5.8. Technical report, INRIA — Rocquencourt, May 1993.Google Scholar
  5. 5.
    H. Ehrig and B. Mahr. Fundamentals of algebraic specifications I, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.Google Scholar
  6. 6.
    J.-C. Fernandez, A. Kerbrat and L. Mounier. Symbolic Equivalence Checking. In C. Courcoubetis, editor, Proceedings of the 5th International Conference, CAV '93, Elounda, Greece, volume 697 of Lecture Notes in Computer Science, pages 85–97. Springer-Verlag, 1993.Google Scholar
  7. 7.
    J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge tracts in theoretical computer science. Cambridge University Press, Cambridge, 1989.Google Scholar
  8. 8.
    R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation semantics (extended abstract). In G.X. Ritter, editor, Information Processing 89, pages 613–618. North-Holland, 1989.Google Scholar
  9. 9.
    J.F. Groote and H. Korver. A correctness proof of the bakery protocol in μCRL. Technical Report Logic Group Preprint Series No. 80, Utrecht University, 1992.Google Scholar
  10. 10.
    J.F. Groote and J.C. van de Pol. A bounded retransmission protocol for large data packets. A case study in computer checked verification. Technical Report 100, Logic Group Preprint Series, Utrecht University, October 1993.Google Scholar
  11. 11.
    J.F. Groote and A. Ponse. The syntax and semantics of μCRL. Technical Report CS-R9076, CWI, Amsterdam, 1990.Google Scholar
  12. 12.
    J.F. Groote and A. Ponse. Proof theory for μCRL. Technical Report CS-R9138, CWI, Amsterdam, 1991.Google Scholar
  13. 13.
    J.F. Groote and A. Ponse. μCRL: A base for analysing processes with data. In E. Best and G. Rozenberg, editors, Proceedings 3rd Workshop on Concurrency and Compositionality, Goslar, GMD-Studien Nr. 191, pages 125–130. Universität Hildesheim, 1991.Google Scholar
  14. 14.
    L. Helmink, M.P.A. Sellink, and F. Vaandrager. Proof-checking a data link protocol. 1993. To appear.Google Scholar
  15. 15.
    H. Korver and J. Springintveld. A Computer-Checked Verification of Milner's Scheduler. Technical Report Logic Group Preprint Series No. 101, Utrecht University, November, 1993. Full version.Google Scholar
  16. 16.
    R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs, 1989.Google Scholar
  17. 17.
    C. Paulin-Mohring. Inductive definitions in the system Coq. Rules and properties. In M. Bezem and J.F. Groote, editors, Proceedings of the 1st International Conference on Typed Lambda Calculi and Applications, TLCA '93, Utrecht, The Netherlands, volume 664 of Lecture Notes in Computer Science, pages 328–345. Springer-Verlag, 1993.Google Scholar
  18. 18.
    M.P.A. Sellink. Verifying process algebra proofs in type theory. Technical Report Logic Group Preprint Series No. 87, Utrecht University, 1993.Google Scholar
  19. 19.
    N.V. Stenning. A data transfer protocol. Computer Networks. 1:99–110, 1976.Google Scholar
  20. 20.
    A.S. Tanenbaum. Computer networks. Prentice-Hall International, Englewood Cliffs, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  1. 1.CWIGB AmsterdamThe Netherlands
  2. 2.Dept. of PhilosophyUtrecht UniversityTC UtrechtThe Netherlands

Personalised recommendations