Advertisement

BMWk revisited generalization and formalization of an algorithm for detecting recursive relations in term sequences

  • Guillaume Le Blanc
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 784)

Abstract

As several works in Machine Learning (particularly in Inductive Logic Programming) have focused on building recursive definitions from examples, this paper presents a formalization and a generalization of the BMWk methodology, which stems from program synthesis from examples, ten years ago. The framework of the proposed formalization is term rewriting. It allows to state some theoretical results on the qualities and limitations of the method.

Keywords

Recursive Relation Inference Rule Inductive Logic Recursive Call Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    David W. Aha, Charles X. Ling, Stan Matwin, and Stephane Lapointe. Learning singly-recursive relations from small datasets. In F. Bergadano, Luc De Raedt, Stan Matwin, and S. Muggleton, editors, Proceedings of the IJCAI workshop on inductive logic programming, Chambéry, France, 1993.Google Scholar
  2. 2.
    Nachum Dershowitz and Jean-Pierre Jouannaud. Handbook of Theorical Computer Science, volume B, chapter Rewrite Systems, pages 243–320. MIT Press, 1990.Google Scholar
  3. 3.
    Jean Fargues. Une méthodologie pour la synthèse de programme: application à la synthèse à partir d'exemples. Thèse, Université Pierre et Marie Curie (Paris VI), June 1978.Google Scholar
  4. 4.
    Peter Idestam-Almquist. Recursive anti-unification. In Stephen Muggleton, editor, Proceedings of the third international workshop on Inductive Logic Programming, pages 241–253, Ljubljana, Slovenia, March 1993. J. Stefan Institute.Google Scholar
  5. 5.
    Jean-Pierre Jouannaud and Yves Kodratoff. Characterization of a class of functions synthesized from examples by a SUMMER'S like method using a BMW matching technique. In Proceedings of the 6th IJCAI, pages 440–447, 1979.Google Scholar
  6. 6.
    Jean-Pierre Jouannaud and Yves Kodratoff. A methodology for two variable functions synthesis from examples. CRIN université de Nancy, 1979.Google Scholar
  7. 7.
    Yves Kodratoff and Jean Fargues. A sane algorithm for the synthesis of LISP functions from example problems: the Boyer and Moore algorithm. In Proceedings of the AISB meeting, pages 169–175, Hamburg, 1978.Google Scholar
  8. 8.
    Yves Kodratoff and Éric Papon. A system for program synthesis and program optimization. In Proceedings of the AISB meeting, pages 1–10, Amsterdam, 1980.Google Scholar
  9. 9.
    Stéphane Lapointe, Charles Ling, and Stan Matwin. Constructive inductive logic programming. In Stephen Muggleton, editor, Proceedings of the third international workshop on Inductive Logic Programming, pages 255–264, Ljubljana, Slovenia, March 1993. J. Stefan Institute.Google Scholar
  10. 10.
    Stéphane Lapointe, Charles Ling, and Stan Matwin. Constructive inductive logic programming. In Ruzena Bajcsy, editor, Proceedings of the 13th IJCAI, volume Vol. 2, pages 1030–1036. Morgan-Kaufmann, August 1993.Google Scholar
  11. 11.
    Stephane Lapointe and Stan Matwin. Induction de programmes logiques récursifs fondée sur la sous-unification. In PRC-IA GRECO, editor, Actes des 1ères Journées Francophones d'Apprentissage et d'Explication des Connaissances, pages 3–14. AFIA AFCET, PRC-IA GRECO, April 1992.Google Scholar
  12. 12.
    Charles Xiaofeng Ling. Inductive learning from good examples. In Proceedings of the 12th IJCAI, volume Vol. 2, pages 751–756, Sydney, Australia, August 1991. Morgan-Kaufmann.Google Scholar
  13. 13.
    Charles Xiaofeng Ling. Inductive Logic Programming, chapter Inductive learning from good examples, pages 113–129. APIC. Turing Institute Press, academic press edition, 1992.Google Scholar
  14. 14.
    Charles Xiaofeng Ling. Inventing necessary theoretical terms to overcome representation bias. In Proceedings of the ML92 workshop on biases in inductive learning, Aberdeen, Scotland, July 1992.Google Scholar
  15. 15.
    Stephen Muggleton, editor. Inductive Logic Programing. APIC. Turing Institute Press, academic press edition, 1991.Google Scholar
  16. 16.
    Stephen Muggleton and C. Feng. Inductive Logic Programming, chapter Efficient induction of logic programs, pages 281–298. APIC. Turing Institute Press, academic press edition, 1992.Google Scholar
  17. 17.
    Éric Papon. Algorithmes de détection de relations de récurrence — application à la synthèse et à la transformation de programmes. Thèse, Université de Paris-Sud, April 1981.Google Scholar
  18. 18.
    Ross J. Quinlan. Learning logical definition from relations. Machine Learning Journal, Vol. 5(3):239–266, 1990.Google Scholar
  19. 19.
    P.D. Summers. A methodology for LISP program construction from examples. Journal of the ACM, Vol. 24:161–175, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Guillaume Le Blanc
    • 1
  1. 1.LRI, URA 410 du CNRSUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations