TPS: An interactive and automatic tool for proving theorems of type theory

  • Peter B. Andrews
  • Matthew Bishop
  • Sunil Issar
  • Dan Nesmith
  • Frank Pfenning
  • Hongwei Xi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 780)

Abstract

This is a demonstration of TPS, a theorem proving system for classical type theory (Church's typed λ-calculus). TPS can be used interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peter B. Andrews, “Transforming Matings into Natural Deduction Proofs,” in 5th Conference on Automated Deduction, edited by W. Bibel and R. Kowalski, Les Arcs, France, Lecture Notes in Computer Science 87, Springer-Verlag, 1980, 281–292.Google Scholar
  2. 2.
    Peter B. Andrews, Theorem Proving via General Matings, Journal of the ACM 28 (1981), 193–214.CrossRefGoogle Scholar
  3. 3.
    Peter B. Andrews, Dale A. Miller, Eve Longini Cohen, Frank Pfenning, “Automating Higher-Order Logic,” in Automated Theorem Proving: After 25 Years, edited by W. W. Bledsoe and D. W. Loveland, Contemporary Mathematics series, vol. 29, American Mathematical Society, 1984, 169–192.Google Scholar
  4. 4.
    Peter B. Andrews, An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, Academic Press, 1986.Google Scholar
  5. 5.
    Peter B. Andrews, Frank Pfenning, Sunil Issar, C. P. Klapper, “The TPS Theorem Proving System,” in 8th International Conference on Automated Deduction, edited by Jorg H. Siekmann, Oxford, England, Lecture Notes in Computer Science 230, Springer-Verlag, 1986, 663–664.Google Scholar
  6. 6.
    Peter B. Andrews, Sunil Issar, Daniel Nesmith, Frank Pfenning, “The TPS Theorem Proving System,” in 9th International Conference on Automated Deduction, edited by Ewing Lusk and Ross Overbeek, Argonne, Illinois, Lecture Notes in Computer Science 310, Springer-Verlag, 1988, 760–761.Google Scholar
  7. 7.
    Peter B. Andrews, On Connections and Higher-Order Logic, Journal of Automated Reasoning 5 (1989), 257–291.Google Scholar
  8. 8.
    Peter B. Andrews, Sunil Issar, Dan Nesmith, Frank Pfenning, “The TPS Theorem Proving System,” in 10th International Conference on Automated Deduction, edited by M. E. Stickel, Kaiserslautern, FRG, Lecture Notes in Artificial Intelligence 449, Springer-Verlag, 1990, 641–642.Google Scholar
  9. 9.
    Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning, The TPS Theorem Proving System, Journal of Symbolic Logic 57 (1992), 353–354. (abstract).Google Scholar
  10. 10.
    Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, Hongwei Xi. TPS: A Theorem Proving System for Classical Type Theory, 1993, unpublished.Google Scholar
  11. 11.
    Peter B. Andrews, Sunil Issar, Dan Nesmith, Frank Pfenning, Hongwei Xi, Matthew Bishop, TPS3 Facilities Guide for Programmers and Users, 1993. 160+vii pp.Google Scholar
  12. 12.
    Peter B. Andrews, Sunil Issar, Dan Nesmith, Frank Pfenning, Hongwei Xi, Matthew Bishop, TPS3 Facilities Guide for Users, 1993. 94+v pp.Google Scholar
  13. 13.
    Wolfgang Bibel, Automated Theorem Proving, Vieweg, Braunschweig, 1987.Google Scholar
  14. 14.
    Alonzo Church, A Formulation of the Simple Theory of Types, Journal of Symbolic Logic 5 (1940), 56–68.Google Scholar
  15. 15.
    Doug Goldson and Steve Reeves, Using Programs to Teach Logic to Computer Scientists, Notices of the American Mathematical Society 40 (1993), 143–148.Google Scholar
  16. 16.
    Michael J. Gordon, Arthur J. Milner, Christopher P. Wadsworth. Edinburgh LCF, Lecture Notes in Computer Science 78, Springer Verlag, 1979.Google Scholar
  17. 17.
    Gerard P. Huet, A Unification Algorithm for Typed λ-Calculus, Theoretical Computer Science 1 (1975), 27–57.CrossRefGoogle Scholar
  18. 18.
    Sunil Issar, “Path-Focused Duplication: A Search Procedure for General Matings,” in AAAI-90. Proceedings of the Eighth National Conference on Artificial Intelligence, AAAI Press/The MIT Press, 1990, 221–226.Google Scholar
  19. 19.
    Sunil Issar. Operational Issues in Automated Theorem Proving Using Matings, Ph.D. Thesis, Carnegie Mellon University, 1991. 147 pp.Google Scholar
  20. 20.
    Sunil Issar, Peter B. Andrews, Frank Pfenning, Dan Nesmith, GRADER Manual, 1991. 23+ipp.Google Scholar
  21. 21.
    Sunil Issar, Dan Nesmith, Peter B. Andrews, Frank Pfenning, TPS3 Programmer's Guide, 1992. 99+iii pp.Google Scholar
  22. 22.
    Dale A. Miller, Eve Longini Cohen, Peter B. Andrews, “A Look at TPS,” in 6th Conference on Automated Deduction, edited by Donald W. Loveland, New York, USA, Lecture Notes in Computer Science 138, Springer-Verlag, 1982, 50–69.Google Scholar
  23. 23.
    Dale A. Miller. Proofs in Higher-Order Logic, Ph.D. Thesis, Carnegie Mellon University, 1983. 81 pp.Google Scholar
  24. 24.
    Dale A. Miller, “Expansion Tree Proofs and Their Conversion to Natural Deduction Proofs,” in 7th International Conference on Automated Deduction, edited by R. E. Shostak, Napa, California, USA, Lecture Notes in Computer Science 170, Springer-Verlag, 1984, 375–393.Google Scholar
  25. 25.
    Dale A. Miller, A Compact Representation of Proofs, Studia Logica 46 (1987), 347–370.Google Scholar
  26. 26.
    Dan Nesmith, Peter B. Andrews, Sunil Issar, Frank Pfenning, TPS User's Manual, 1991. 35+ii pp.Google Scholar
  27. 27.
    Frank Pfenning, “Analytic and Non-analytic Proofs,” in 7th International Conference on Automated Deduction, edited by R. E. Shostak, Napa, California, USA, Lecture Notes in Computer Science 170, Springer-Verlag, 1984, 394–413.Google Scholar
  28. 28.
    Frank Pfenning. Proof Transformations in Higher-Order Logic, Ph.D. Thesis, Carnegie Mellon University, 1987. 156 pp.Google Scholar
  29. 29.
    Frank Pfenning and Dan Nesmith, “Presenting Intuitive Deductions via Symmetric Simplification,” in 10th International Conference on Automated Deduction, edited by M. E. Stickel, Kaiserslautern, FRG, Lecture Notes in Artificial Intelligence 449, Springer-Verlag, 1990, 336–350.Google Scholar
  30. 30.
    Frank Pfenning, Sunil Issar, Dan Nesmith, Peter B.Andrews, ETPS User's Manual, 1992. 48+ii pp.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Peter B. Andrews
    • 1
  • Matthew Bishop
    • 1
  • Sunil Issar
    • 1
  • Dan Nesmith
    • 2
  • Frank Pfenning
    • 1
  • Hongwei Xi
    • 1
  1. 1.Mathematics DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.University of the SaarlandSaarbruckenGermany

Personalised recommendations