Periodic constant depth sorting networks

  • Marcin Kik
  • Mirosław Kutyłowski
  • Grzegorz Stachowiak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 775)


Comparator networks of constant depth can be used for sorting in the following way. The computation consists of a number of iterations, say t, each iteration being a single run through the comparator network. The output of iteration j (j < t) is used as the input for iteration j+1. The output of the iteration t is the output of the computation. In such a way, it is possible to apply a network with a small number of comparators for sorting long input sequences. However, it is not clear how to make such a computation fast.

Odd-Even Transposition Sort gives a periodic sorting network of depth 2, that sorts n numbers in n/2 iterations. The network of depth 8 proposed by Schwiegelshohn [8] sorts n numbers in O(√nlog n) iterations. Krammer

For a fixed but arbitrary k ∃ ℕ, we present a periodic sorting network of depth O(k) that sorts n input numbers in O(k2 · n1/k) steps.


Input Sequence Systolic Array Constant Depth Main Lemma Sorting Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ajtai, J. Komlós and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica 3 (1983) 1–19.Google Scholar
  2. 2.
    K. E. Batcher. Sorting networks and their applications. In AFIPS Conf. Proc. 32, pp. 307–314, 1968.Google Scholar
  3. 3.
    M. Dowd, Y. Perl, M. Saks, and L. Rudolph. The periodic balanced sorting network. J. ACM 36 (1989) 738–757.Google Scholar
  4. 4.
    M. Kik, M. Kutyłowski, G, Stachowiak. Periodic constant depth sorting networks. Tech. Report tr-rf-93-007, Heinz-Nixdorf-Institut, Universität Paderborn, September 1993.Google Scholar
  5. 5.
    J. G. Krammer. Lösung von Datentransportproblemen in integrierten Schaltungen. Ph.D. Dissertation, Technical University Munich, 1991.Google Scholar
  6. 6.
    F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes (Morgan Kaufmann, San Mateo, 1992).Google Scholar
  7. 7.
    F. Meyer auf der Heide. Personal communication, 1991.Google Scholar
  8. 8.
    U. Schwiegelshohn. A shortperiodic two-dimensional systolic sorting algorithm. In IEEE International Conference on Systolic Arrays, pp. 257–264, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Marcin Kik
    • 1
  • Mirosław Kutyłowski
    • 1
  • Grzegorz Stachowiak
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations