Transforming constraint logic programs

  • N. Bensaou
  • I. Guessarian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 775)


We study ”à la Tamaki-Sato” transformations of constraint logic programs. We give an operational and fixpoint semantics of our constraint logic programs, show that the operational semantics is sound and complete with respect to the fixpoint semantics; we then extend the Tamaki-Sato transformation system into a fold-unfold transformation system which can take care of constraints and we give a direct proof of its correctness which is simpler than the Tamaki-Sato proof.


Logic Program Logic Programming Transformation System Transformation Rule Operational Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Bossi; N. Cocco; S. Dulli. A method for specializing logic programs. ACM Trans on programming langages and systems, Vol. 12, 2, April 1990, 253–302.Google Scholar
  2. [2]
    R.M. Burstall; J. Darlington. A transformation system for deriving recursive programs, JACM, Vol. 24, 1, 1977.Google Scholar
  3. [3]
    F. Denis, J.P. Delahaye. Unfolding, procedural and fixpoint semantics of logic programs Proc. STACS'1991, LNCS 480, 1991, 511–522.Google Scholar
  4. [4]
    M. Falaschi; G. Levi; M. Martelli; C. Palamidessi. Declarative Modeling of the Operational Behavior of Logic Languages, Theoretical Computer Science 69, 1989, 289–318.Google Scholar
  5. [5]
    M Gabbrielli; G. Levi. Modeling answer constraints in Constraint Logic Programs. Proc. eight int. conf. on Logic Programming, eds. Koichi & Furukawa, 1991, 238–252.Google Scholar
  6. [6]
    J. Jaffar; J.L. Lassez. Constraint logic programming, Proc. fourteenth ACM symp. on principles of programming languages, 1987, 111–119.Google Scholar
  7. [7]
    J. Jaffar; J.L. Lassez. Constraint logic programming, Tech. report, Department of Computer Science, Monash university, June 1986.Google Scholar
  8. [8]
    P. Kanellakis; G. Kuper; P. Revesz. Constraint Query Languages, Tech. report, Department of Computer Science, Brown university, November 1990.Google Scholar
  9. [9]
    G. Levi. Models, unfolding rules and fixpoint semantics, Proc.of the fifth international conf. on Logic programming, 1988, 1649–1665.Google Scholar
  10. [10]
    J.W. Lloyd. Foundations of logic programming, Springer-Verlag, Berlin, 1987.Google Scholar
  11. [11]
    M.J. Maher. Equivalences of logic programs, Fondations of Deductive Databases and Logic Programming, J. Minker Ed., Morgan-Kaufmann, Los Altos, 1988, 627–658.Google Scholar
  12. [12]
    M.J.Maher. Correctness of a logic program transformation system, IBM Research Report RC 13496, T.J. Watson Research center, 1987.Google Scholar
  13. [13]
    M.J. Maher, A transformation system for deductive database modules with perfect model semantics. Theoretical Computer Science 110, 1993, 377–403.Google Scholar
  14. [14]
    A. Parrain; P. Devienne; P. Lebegue. Techniques de transformations de programmes généraux et validation de meta-interpréteurs, BIGRE 1991.Google Scholar
  15. [15]
    M. Proietti, A. Pettorossi. An abstract strategy for transforming logic programs, Fundamenta Informaticae, Vol. 18, 1993, 267–286.Google Scholar
  16. [16]
    M. Proietti, A. Pettorossi. Semantics preserving transformation rules for Prolog, Proc. PEPM'91, ACM-SIGPLAN 9, 1991, 274–284.Google Scholar
  17. [17]
    H. Tamaki; T. Sato. Unfold/Fold transformation of logic programs, Proc. 2nd logic programming conference, Uppsala, Sweden, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • N. Bensaou
    • 1
  • I. Guessarian
    • 1
  1. 1.LITP - Université Paris 6France

Personalised recommendations