On some algorithmic and computational problems for neuronal diffusion models

  • Virginia Giorno
  • Amelia G. Nobile
  • Luigi M. Ricciardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 763)


In this work we consider some one-dimensional diffusion processes arising in single neurons' activity modelling and discuss some of the related theoretical and computational first passage time problems. With reference to the Wiener and the Ornstein-Uhlenbeck processes, we outline some theoretical methods and algorithmic procedures. In particular, the relevance of the computational methods to infer about asymptotic trends of the firing pdf is pointed out.


Neuronal Model Laplace Transform Interspike Interval Firing Time First Passage Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderssen, R.S., DeHoog, F.R. and Weiss, R.: On the numerical solution of Brownian motion processes. J. Appl. Prob. 10 (1973) 409–418Google Scholar
  2. 2.
    Buonocore, A., Nobile, A.G. and Ricciardi, L.M.: A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Prob. 19 (1987) 784–800Google Scholar
  3. 3.
    Cerbone, G., Ricciardi, L.M. and Sacerdote, L.: Mean, variance and skewness of the first passage time for the Ornstein-Uhlenbeck process. Cybern. Syst. 12 (1981) 395–429Google Scholar
  4. 4.
    Daniels, H.E.: The minimum of a stationary Markov process superimposed on a U-shaped trend. J. Appl. Prob. 6 (1969) 399–408Google Scholar
  5. 5.
    Durbin, J.: Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test. J. Appl. Prob. 8 (1971) 431–453Google Scholar
  6. 6.
    Favella, L., Reineri, M.T., Ricciardi, L.M. and Sacerdote, L.: First passage time problems and some related computational problems. Cybernetics and Systems 13 (1982) 95–128Google Scholar
  7. 7.
    Feller, W.: Parabolic differential equations and semigroup transformations. Ann. Math. 55 (1952) 468–518Google Scholar
  8. 8.
    Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1–31Google Scholar
  9. 9.
    Feller, W.: An Introduction to Probability Theory and its Applications vol.2. Wiley, New York, 1966Google Scholar
  10. 10.
    Gerstein, G.L. and Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4 (1964) 41–68Google Scholar
  11. 11.
    Giorno, V., Lánský P., Nobile, A.G., Ricciardi, L.M.: Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death process approach. Biol. Cybern. 58 (1988) 387–404Google Scholar
  12. 12.
    Giorno, V., Nobile, A.G., Ricciardi, L.M. and Sato, S.: On the evaluation of the first-passage-time densities via non-singular integral equations. Adv. Appl. Prob. 21 (1989) 20–36Google Scholar
  13. 13.
    Giorno, V., Nobile, A.G. and Ricciardi, L.M.: On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries. Adv. Appl. Prob. 22 (1990) 883–914Google Scholar
  14. 14.
    Holden, A.V.: A note on convolution and stable distributions in the nervous system. Biol. Cybern. 20 (1975) 171–173Google Scholar
  15. 15.
    Karlin, S. and Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York, 1981Google Scholar
  16. 16.
    Lánský, P.: On approximations of Stein's neuronal model. J. Theor. Biol. 107 (1984) 631–647Google Scholar
  17. 17.
    Matsuyama, Y.: A note on stochastic modeling of shunting inhibition. Biol. Cybern. 24 (1976) 139–145Google Scholar
  18. 18.
    Matsuyama, Y., Shirai, K. and Akizuki, K.: On some properties of stochastic information processes in neurons and neuron populations. Kybernetik 15 (1974) 127–145Google Scholar
  19. 19.
    Nobile, A.G., Ricciardi, L.M. and Sacerdote, L.: Exponential trends of Ornstein-Uhlenbeck first-passage-time densities. J. Appl. Prob. 22 (1985) 360–369Google Scholar
  20. 20.
    Nobile, A.G., Ricciardi, L.M. and Sacerdote, L.: Exponential trends of first-passage-time densities for a class of diffusion processes with steady-state distribution. J. Appl. Prob. 22 (1985) 611–618Google Scholar
  21. 21.
    Park, C. and Schuurmann, F.J.: Evaluations of barrier-crossing probabilities of Wiener paths. J. Appl. Prob. 13 (1976) 267–275Google Scholar
  22. 22.
    Park, C. and Schuurmann, F.J.: Evaluations of absorption probabilities for the Wiener process on large intervals. J. Appl. Prob. 17 (1980) 363–372Google Scholar
  23. 23.
    Ricciardi, L.M.: Diffusion processes and related topics in Biology. (Lecture Notes in Biomathematics, vol. 14)., Springer, Berlin Heidelberg New York, 1977Google Scholar
  24. 24.
    Ricciardi, L.M.: Diffusion approximation and computational problems for single neurons activity. In: Amari S. and Arbib M.A. (eds.) Competition and Cooperation in Neural Nets. (Lecture Notes in Biomathematics, vol. 45). Springer, New York. 1982, 143–154Google Scholar
  25. 25.
    Rodieck, R.W., Kiang, N.Y.-S. and Gerstein, G.L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2 (1962) 351–368Google Scholar
  26. 26.
    Škvařil, J., Radii-Weiss, T., Bohdanecký, Z. and Syka, J.: Spontaneous discharge patterns of mesencephalic neurons, interval histogram and mean interval relationship. Kybernetik 9 (1971) 11–15PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Virginia Giorno
    • 1
  • Amelia G. Nobile
    • 2
  • Luigi M. Ricciardi
    • 3
  1. 1.Dipartimento di Informatica e Applicazioni dell'UniversitàSalernoItaly
  2. 2.Dipartimento di Matematica e Informatica dell'UniversitàUdineItaly
  3. 3.Dipartimento di Matematica e Applicazioni dell'UniversitàNapoliItaly

Personalised recommendations