[1]

D. Avis and G. T. Toussaint. “An optimal algorithm for determining the visibility polygon from an edge,”

*IEEE Trans. Comput*, C-30 (12) (1981), pp. 910–914.

Google Scholar[2]

B. K. Bhattacharya, D. G. Kirkpatrick, and G. T. Toussaint. “Determining sector visibility of a polygon,” *Proc. 5-th Annual ACM Symp. Computational Geometry*, 1989, pp. 247–254.

[3]

B. K. Bhattacharya, A. Mukhopadhyay, and G. T. Toussaint. “A linear time algorithm for computing the shortest line segment from which a polygon is weakly externally visible,” *Proc. Workshop on Algorithms and Data Structures (WADS'91)*, 1991, Ottawa, Canada, pp. 412–424.

[4]

B. Chazelle and L. J. Guibas. “Visibility and intersection problems in plane geometry,”

*Discrete and Computational Geometry*, 4 (1989), pp. 551–581.

Google Scholar[5]

D. Z. Chen. “An optimal parallel algorithm for detecting weak visibility of a simple polygon,” *Proc. of the Eighth Annual ACM Symp. on Computational Geometry*, 1992, pp. 63–72.

[6]

D. Z. Chen. “Parallel techniques for paths, visibility, and related problems,” Ph.D. thesis, Technical Report No. 92-051, Dept. of Computer Sciences, Purdue University, July 1992.

[7]

Y. T. Ching, M. T. Ko, and H. Y. Tu. “On the cruising guard problems,” Technical Report, 1989, Institute of Information Science, Academia Sinica, Taipei, Taiwan.

Google Scholar[8]

J. I. Doh and K. Y. Chwa. “An algorithm for determining visibility of a simple polygon from an internal line segment,”

*Journal of Algorithms*, 14 (1993), pp. 139–168.

CrossRefGoogle Scholar[9]

H. ElGindy. “Hierarchical decomposition of polygon with applications,” Ph.D. thesis, McGill University, 1985.

[10]

S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, and C. E. V. Madhavan. “Characterizing weak visibility polygons and related problems,” Technical Report No. IISc-CSA-90-1, 1990, Dept. Computer Science and Automation, Indian Institute of Science.

[11]

M. T. Goodrich, S. B. Shauck, and S. Guha. “Parallel methods for visibility and shortest path problems in simple polygons (Preliminary version),” *Proc. 6-th Annual ACM Symp. Computational Geometry*, 1990, pp. 73–82.

[12]

L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. “Linear time algorithms for visibility and shortest paths problems inside triangulated simple polygons,”

*Algorithmica*, 2 (1987), pp. 209–233.

CrossRefGoogle Scholar[13]

P. J. Heffernan and J. S. B. Mitchell. “Structured visibility profiles with applications to problems in simple polygons,” *Proc. 6-th Annual ACM Symp. Computational Geometry*, 1990, pp. 53–62.

[14]

J. Hershberger. “Optimal parallel algorithms for triangulated simple polygons,” *Proc. 8-th Annual ACM Symp. Computational Geometry*, 1992, pp. 33–42.

[15]

Y. Ke. “Detecting the weak visibility of a simple polygon and related problems,” manuscript, Dept. of Computer Science, The Johns Hopkins University, 1988.

[16]

C. P. Kruskal, L. Rudolph, and M. Snir. “The power of parallel prefix,”

*IEEE Trans. Comput.*, C-34 (1985), pp. 965–968.

Google Scholar[17]

R. E. Ladner and M. J. Fischer. “Parallel prefix computation,”

*Journal of the ACM*, 27 (4) (1980), pp. 831–838.

CrossRefGoogle Scholar[18]

D. T. Lee and A. K. Lin. “Computing the visibility polygon from an edge,”

*Computer Vision, Graphics, and Image Processing*, 34 (1986), pp. 1–19.

Google Scholar[19]

S. H. Lee and K. Y. Chwa. “Some chain visibility problems in a simple polygon,”

*Algorithmica*, 5 (1990), pp. 485–507.

CrossRefGoogle Scholar[20]

J.-R. Sack and S. Suri. “An optimal algorithm for detecting weak visibility of a polygon,”

*IEEE Trans. Comput*, C-39 (10) (1990), pp. 1213–1219.

CrossRefGoogle Scholar[21]

S. Y. Shin. “Visibility in the plane and its related problems,” Ph.D. thesis, University of Michigan, 1986.

[22]

G. T. Toussaint. “A linear-time algorithm for solving the strong hidden-line problem in a simple polygon,”

*Pattern Recognition letters*, 4 (1986), pp. 449–451.

CrossRefGoogle Scholar[23]

G. T. Toussaint and D. Avis. “On a convex hull algorithm for polygons and its applications to triangulation problems,”

*Pattern Recognition*, 15 (1) (1982), pp. 23–29.

CrossRefGoogle Scholar