Advertisement

How to treat delete requests in semi-online problems

  • Yang Dai
  • Hiroshi Imai
  • Kazuo Iwano
  • Naoki Katoh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 762)

Keywords

Edge Weight Knapsack Problem Online Algorithm Dynamic Algorithm Feasibility Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs, N.J., 1992.Google Scholar
  2. 2.
    Buchsbaum, A.L., P.C. Kanellakis, and J.S. Vitter, A data structure for arc insertion and regular path finding, ACM/SIAM SODA, (1990), pp. 22–31.Google Scholar
  3. 3.
    Dai, Y., H. Imai, K. Iwano, N. Katoh, K. Ohtsuka, and N. Yoshimura, A new unified approximate approach to the minimum cut problem and its variants using minimum range cut algorithms, manuscript, 1992.Google Scholar
  4. 4.
    Eppstein, D., Offline algorithms for dynamic minimum spanning tree problems, WADS, LNCS 519 Springer-Verlag, (1991), pp. 392–399.Google Scholar
  5. 5.
    Eppstein, D., G.F. Italiano, R. Tamassia, R.E. Tarjan, J. Westbrook, and M. Yung, Maintenance of a minimum spanning forest in a dynamic planar graph. ACM/SIAM SODA, (1990), pp. 1–11.Google Scholar
  6. 6.
    Fiduccia, C.M. and R.M. Mattheyses, A linear time heuristic for improving network partitions, ACM/IEEE DAC, (1982), pp. 175–181.Google Scholar
  7. 7.
    Frederickson, G.N., Data structures for on-line updating of minimum spanning trees, SIAM J. Computing, 14 (1985), pp. 781–798.Google Scholar
  8. 8.
    Fredman, M.L. and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, JACM, Vol. 34, No. 3, (1987) pp. 596–615.CrossRefGoogle Scholar
  9. 9.
    Garey, M.R. and D.S. Johnson, Computers and Intractability — A Guide to the Theory of NP-completeness, W. H. Freeman and Company, New York, NY, 1979.Google Scholar
  10. 10.
    Katoh, N. and K. Iwano, Efficient algorithms for minimum range cut problems, WADS, LNCS 519 Springer-Verlag, (1991), pp. 80–91.Google Scholar
  11. 11.
    Kernighan, B.W. and S. Lin, An effective heuristic procedure for partitioning graphs, BSTJ, Vol. 49, No.2, (1970), pp. 291–307.Google Scholar
  12. 12.
    Lawler, E.L., A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem, Management Science, Vol. 18, 1972, pp. 401–405.Google Scholar
  13. 13.
    Martello, S., W.R. Pulleyblank, P. Toth, and D. de Werra, Balanced optimization problems. Operations Research Letters, Vol. 3, No. 5, 275–278. 1984.CrossRefGoogle Scholar
  14. 14.
    Martello, S. and P. Toth, Knapsack Problems: Algorithms and Computer Implementations, John Wiley & Sons, West Sussex, England, 1990.Google Scholar
  15. 15.
    Papadimitriou, C.H. and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.Google Scholar
  16. 16.
    Sleator, D.D. and R.E. Tarjan, A data structure for dynamic trees, Journal of Computer and System Sciences, 26, pp. 362–391, (1983).CrossRefGoogle Scholar
  17. 17.
    Tarjan, R.E., Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Yang Dai
    • 1
  • Hiroshi Imai
    • 2
  • Kazuo Iwano
    • 3
  • Naoki Katoh
    • 1
  1. 1.Dept. of Management ScienceKobe University of CommerceKobeJapan
  2. 2.Dept. of Information ScienceUniversity of TokyoTokyoJapan
  3. 3.Tokyo Research LaboratoryIBM JapanKanagawaJapan

Personalised recommendations