Parallel approximation schemes for problems on planar graphs

Extended abstract
  • J. Díaz
  • M. J. Serna
  • J. Torán
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 726)


This paper describes a technique to obtain NC Approximations Schemes for the Maximun Independent Set in planar graphs and related optimization problems.


Planar Graph Tree Representation Embed Graph Minimum Vertex Cover Planar Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AM86]
    R.J. Anderson and E.W. Mayr. Approximating P-complete problems. Technical report, Stanford University, 1986.Google Scholar
  2. [Bak83]
    B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs. In 24 IEEE Symposium on Foundations of Computer Science, pages 265–273, 1983.Google Scholar
  3. [CN89]
    M. Chrobak and J. Naor. An efficient parallel algorithm for computing large independent set in a planar graph. In SPAA-89, pages 379–387. Association for Computing Machinery, 1989.Google Scholar
  4. [GJ79]
    M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.Google Scholar
  5. [Hag90]
    T. Hagerup. Planar depth-first search in log n parallel time. SIAM Journal on Computing, 19:678–703, 1990.Google Scholar
  6. [KR86]
    P.H. Klein and J.H. Reif. An efficient parallel algorithm for planarity. In IEEE Symposium on Foundations of Computer Science, pages 465–477. IEEE Society, 1986.Google Scholar
  7. [KR90]
    R. Karp and V. Ramachandran. Parallel algorithms for shared memory machines. In Jan van Leewen, editor, Handbook of Theoretical Computer Science, Vol. A, pages 869–942. Elsevier Science Publishers, 1990.Google Scholar
  8. [KS93]
    P. Klein and C. Stein. A parallel algorithm for approximating the minimum cycle cover. Algorithmica, 9:23–31, 1993.Google Scholar
  9. [KSS89]
    L.M. Xirousis, M.J. Serna, and P. Spirakis. The parallel complexity of the connected subgraph problem. In 30th. IEEE Symposium on Foundations of Computer Science, pages 446–456. IEEE, 1989.Google Scholar
  10. [LN92]
    M. Luby and N. Nisan. A parallel approximation algorithm for positive linear programming. Technical report, International Computer Science Institute, Berkeley, 1992.Google Scholar
  11. [PR87]
    J.G. Peters and L. Rudolph. Parallel approximation schemes for subset sum and knapsack problems. Acta Informatica, 24:417–432, 1987.Google Scholar
  12. [Ser90]
    M.J. Serna. The parallel approximability of P-complete problems. PhD thesis, Universitat Politecnica de Catalunya, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. Díaz
    • 1
  • M. J. Serna
    • 1
  • J. Torán
    • 1
  1. 1.Departament de Llenguatges i SistemesUniversitat Politècnica CatalunyaBarcelona

Personalised recommendations