Advertisement

Fusion of the stereoscopic and temporal matching results by an algorithm of coherence control and conflicts management

  • B. Chebaro
  • A. Crouzil
  • L. Massip-Pailhes
  • S. Castan
3-D Vision
Part of the Lecture Notes in Computer Science book series (LNCS, volume 719)

Abstract

In this paper, we describe a process in order to manage a stereoscopic sequence of images. This process is based on a steroscopic and temporal matching algorithm. The originality of our method lies in an algorithm for coherences control and conflicts management.

Keywords

Edge Point Conflict Management Stereo Match Correspondence Problem Temporal Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, J.K., Nondhakumar, N.: On the computation of motion from sequences of images-a review. Proceedings of the IEEE, vol.76, no.8 aug. 1988.Google Scholar
  2. 2.
    Castan, S., Massip-pailhes, L., Rodriguez, V.: Displacement vector field computation by temporal covariance model. IEEE, CVPR 1985.Google Scholar
  3. 3.
    Chebaro, B., Massip-pailhes, L., Castan, S.: Conception d'un système d'analyse du mouvent 3D de régions utilisant une séquence stéréoscopique. 8 AFCET, Villeurbanne, France, 1991.Google Scholar
  4. 4.
    Chebaro, B., Massip-pailhes, L., Castan, S.: Description polygonale basée sur l'extraction d'ilots de confiance. 8th AFCET, Villeurbanne, France, 1991.Google Scholar
  5. 5.
    Cornilleau-Peres, V., Draulez, J.: Stereo correspondance from optic flow. First European Conference on Computer Vision, Antibes, France, apr. 1990.Google Scholar
  6. 6.
    Faugeras, O., Ayache, N., Zhang, Z.: A preliminary investigation of the problem of determining ego-and object motions from stereo. 9th ICPR, Rome, Italy, 1988.Google Scholar
  7. 7.
    Huang, T. S., Blostein S. D.: Robust algorithms for motion estimation based on two sequential stereo images pairs. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, 1985, pp 518–523.Google Scholar
  8. 8.
    Jenkin, M. R. M.: On the use of trajectory information to assist stereopsis in a dynamic environment. First European Conference on Computer Vision, Antibes, France, apr. 1990.Google Scholar
  9. 9.
    Mutch, K.: Determining object translation information using stereoscopic motion. IEEE transactions on Pattern Analysis and Machine Intelligence, vol PAMI no-8 nov. 1986.Google Scholar
  10. 10.
    Nagel, H. H.: Ten (octal) years. F rom phenomelogy towards a theoretical foundation. Proc. 8th Int. Conf. on Pattern Recognition, Paris, oct. 1986, pp 1174–1180.Google Scholar
  11. 11.
    Shen, J., Castan, S., Zhao, J.: A new passive measurement method by trinocular stereo vision. Industrial Meterology, vol 1, no 3, 1990, pp 231–259.Google Scholar
  12. 12.
    Tsukune, H.: Trinocular stereo analysis of optical flow. 10th ICPR, Atlantic-city, USA, June 1990.Google Scholar
  13. 13.
    Waxman, A. M., Sinha, S. S.: Passive ranging to moving objects from relative image flows. PAMI-8, no 6, nov 1986.Google Scholar
  14. 14.
    Waxman, A. M., Duncan, J.H.: Binocular image flows steps toward stereo-motion fusion. IEEE transactions on Pattern Analysis and Machine Intelligence vol PAMI-8,no 6, nov 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • B. Chebaro
    • 1
  • A. Crouzil
    • 1
  • L. Massip-Pailhes
    • 1
  • S. Castan
    • 1
  1. 1.IRIT-UPSToulouse cedexFrance

Personalised recommendations