A congruence theorem for structured operational semantics with predicates

  • J. C. M. Baeten
  • C. Verhoef
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 715)


We proposed a syntactical format, the path format, for structured operational semantics in which predicates may occur. We proved that strong bisimulation is a congruence for all the operators that can be defined within the path format. To show that this format is useful we provided many examples that we took from the literature about CCS, CSP, and ACP; they do satisfy the path format but no formats proposed by others. The examples include concepts like termination, convergence, divergence, weak bisimulation, a zero object, side conditions, functions, real time, discrete time, sequencing, negative premises, negative conclusions, and priorities (or a combination of these notions).

Key Words & Phrases

structured operational semantics term deduction system transition system specification structured state system labelled transition system strong bisimulation congruence theorem predicate 

1980 Mathematics Subject Classification (1985 Revision)

6BQ05 68Q55 

CR Categories

D.3.1 F.1.1 F.3.2 F.4.3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Aceto, M. Hennessy, Termination, deadlock and divergence, JACM 39(1):147–187, 1992.CrossRefGoogle Scholar
  2. [2]
    J. C. M. Baeten, J. A. Bergstra, Discrete Time Process Algebra, Report P9208b, Programming Research Group, University of Amsterdam, 1992.Google Scholar
  3. [3]
    J. C. M. Baeten, J. A. Bergstra, Process algebra with a zero object, in: J. C. M. Baeten and J. W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458, pp. 83–98, Springer-Verlag, 1990.Google Scholar
  4. [4]
    J. C. M. Baeten, J. A. Bergstra, J. W. Klop, On the consistency of Koomen's fair abstraction rule, TCS 51(1/2), pp. 129–176, 1987.CrossRefGoogle Scholar
  5. [5]
    J. C. M. Baeten, J. A. Bergstra, J. W. Klop, Syntax and defining equations for an interrupt mechanism in process algebra, Fundamenta Informaticae IX, pp. 127–168, 1986.Google Scholar
  6. [6]
    J. C. M. Baeten, R. J. van Glabbeek, Merge and termination in process algebra, in: K. V. Nori, editor, Proceedings 7th Conference on Foundations of Software Technology and Theoretical Computer Science, Pune, India, LNCS 287, pp. 153–172, Springer-Verlag, 1987.Google Scholar
  7. [7]
    J. C. M. Baeten and F. W. Vaandrager, An algebra for process creation, Acta Informatica 29, pp. 303–334, 1992.CrossRefGoogle Scholar
  8. [8]
    J. C. M. Baeten, W. P. Weijland, Process algebra, Cambridge Tracts in Theoretical Computer Science 18, Cambridge University Press, 1990.Google Scholar
  9. [9]
    J. A. Bergstra, J. W. Klop, Algebra of communicating processes with abstraction, TCS 37, 77–121, 1985.CrossRefGoogle Scholar
  10. [10]
    J. A. Bergstra, J. W. Klop, Fixed point semantics in process algebras, MC report IW 206, Mathematical Centre, Amsterdam, 1982. Revised version: J. A. Bergstra, J. W. Klop, A convergence theorem in process algebra, in Ten years of concurrency semantics: selected papers of the Amsterdam Concurrency Group, editors J. W. de Bakker, J. J. M. M. Rutten, World Scientific, pp. 164–195, 1992.Google Scholar
  11. [11]
    B. Bloom, S. Istrail, and A. R. Meyer, Bisimulation can't be traced: preliminary report, In: Proceedings 15th ACM Symposium on Principles of Programming Languages, San Diego, California, pp. 229–239, 1988.Google Scholar
  12. [12]
    W. J. Fokkink, personal communication, January 1993.Google Scholar
  13. [l3]
    K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, J. Meseguer, Principles of OBJ2, in Conference Record of the Twelfth Annual ACM Symposium on Principles of Programming Languages, editor B. Reid, pp. 52–66, ACM, 1985.Google Scholar
  14. [14]
    R. J. van Glabbeek, Bounded nondeterminism and the approximation induction principle in process algebra, In: Proceedings STACS 87 (F. J. Brandenburg, G. Vidal-Naquet, M. Wirsing, eds.), LNCS 247, Springer Verlag, pp. 336–347, 1987.Google Scholar
  15. [l5]
    J. F. Groote, Transition system specifications with negative premises, Report CS-R9850, CWI, Amsterdam, 1989. An extended abstract appeared in: see [3] pp. 332–341.Google Scholar
  16. [16]
    J. F. Groote and F. W. Vaandrager, Structured operational semantics and bisimulation as a congruence, Information and Computation 100(2), pp. 202–260, 1992.CrossRefGoogle Scholar
  17. [17]
    A. Ingólfsdóttir, B. Thomsen, Semantic Models for CCS with Values, in: Proceedings Chalmers Workshop on Concurrency, 1991, pp. 215–242, Report PMG-R63, Chalmers University of Technology and University of Göteborg, 1992.Google Scholar
  18. [18]
    A. S. Klusener, Completeness in real time process algebra, Technical Report CS-R9106, CWI, Amsterdam, 1991. An extended abstract appeared in J. C. M. Baeten and J. F. Groote, editors, Proceedings CONCUR 91, Amsterdam, LNCS 527, pp. 376–392, 1991.Google Scholar
  19. [19]
    C. P. J. Koymans and J. L. M. Vrancken, Extending process algebra with the empty process ɛ, Logic Group Preprint Series Nr. 1, CIF, Utrecht University, 1985.Google Scholar
  20. [20]
    R. Milner, A calculus of communicating systems, LNCS 92, Springer Verlag, 1980.Google Scholar
  21. [21]
    F. Moller and C. Tofts, A Temporal Calculus of Communicating Systems, in: see [3], pp. 401–4151990.Google Scholar
  22. [22]
    D. M. R. Park, Concurrency and automata on infinite sequences, In P. Duessen (ed.) 5th GI Conference, LNCS 104, pp. 167–183, Springer-Verlag, 1981.Google Scholar
  23. [23]
    G. D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.Google Scholar
  24. [24]
    S. Schneider, An Operational Semantics for Timed CSP, in: see [17] pp. 428–456. To appear in Information and Computation.Google Scholar
  25. [25]
    R. de Simone, Higher-level synchronising devices in Meije-SCCS, TCS 37, pp. 245–267, 1985.Google Scholar
  26. [26]
    Wang Yi, Towards a Theory of Testing for CCS with Probability, in: see [17] pp. 476–492.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. C. M. Baeten
    • 1
  • C. Verhoef
    • 1
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands

Personalised recommendations