Advertisement

Analytic tableaux for finite and infinite Post logics

  • Nicolas Zabel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 711)

Abstract

We present a tableau-based calculus for the finite and infinite valued Post logics, well suited for automated deduction. We use a possible world semantics and a prefixed tableau calculus based on it. The formula prefixes contain arithmetical expressions and variables. The world-information is handled by solving constraints which express ordering problems. Some hints of future work are given.

Keywords

Inference Rule Intuitionistic Logic Automate Theorem Prove World Semantic Kripke Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Dahn. Kripke-style semantics for some many-valued propositional calculi. Bulletin de I'Académie Polonaise des Sciences. série des sciences math., astr. et phys., XXII(2):99–102, 1974.Google Scholar
  2. 2.
    Michael Dummett. A propositional calculus with denumerable matrix. Journal of Symbolic Logic, 24(2):97–106, June 1959.Google Scholar
  3. 3.
    Melvin Fitting. First Order Logic and Automated theorem Proving. Springer-Verlag, 1990.Google Scholar
  4. 4.
    Reiner Hähnle. Automated Theorem Proving in Multiple Valued Logics. Oxford University Press. to appear.Google Scholar
  5. 5.
    Ronald Harrop. Some structure results for propositional calculi. Journal of Symbolic Logic, 30(3):271–292, September 1965.Google Scholar
  6. 6.
    G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen, 1984.Google Scholar
  7. 7.
    L. Maksimova and D. Vakarelov. Semantics for ω+-valued predicate calculi. Bulletin de l'Académie Polonaise des Sciences. série des sciences math., astr. et phys., XXII(8):765–771, 1974.Google Scholar
  8. 8.
    Ewa Orlowska. The Gentzen style axiomatisation of ω+-valued logic. Studia Logica, 35(4):433–445, 1976.Google Scholar
  9. 9.
    Raymond M. Smullyan. First Order Logic. Springer-Verlag, 1968.Google Scholar
  10. 10.
    Dirk van Dalen. Intuitionistic logic. In Dov Gabbay and Fianz Günthner, editors, Handbook of Philosophical Logic, vol. III: Alternatives of classical logic, volume 166 of Synthese Library, chapter III.4, pages 225–240. Reidel, 1986.Google Scholar
  11. 11.
    Nicolas Zabel. Nouvelles techniques de deduction automatique en logiques polyvalentes du premier ordre, finies et infinies. Thèse, Institut National Polytechnique de Grenoble, 1992. forthcoming.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Nicolas Zabel
    • 1
  1. 1.LIFIA-IMAGGrenoble CedexFrance

Personalised recommendations