1.

L. Augustsson, T. Coquand and B. Nordström. A Short Description of Another Logical Framework, *1st Workshop on Logical Frameworks*, ed.s Huet and Plotkin, pp 39–42, 1990.

2.

A. Avron, F. Honsell, I.A. Mason and R. Pollack. Using Typed Lambda Calculus to Implement Formal Systems on a Machine,

*Automated Reasoning*, Vol. 9, pp 309–354, 1992.

CrossRefGoogle Scholar3.

A. Avron. Simple Consequence Relations,

*Information and Computation*, Vol. 1, pp 105–139, 1991.

CrossRefGoogle Scholar4.

H. Barendregt. Lambda Calculi with Types,

*Handbook of Logic in Computer Science*, OUP, Vol. 2, pp 117–309, 1991.

Google Scholar5.

J. Bénabou. Fibred Categories and the Foundations of Naive Category Theory,

*Symbolic Logic*, Vol. 50, pp 10–37, 1985.

Google Scholar6.

N.G. de Bruijn. A Survey of the Project Automath, in [31], pp 589–606, 1980.

7.

A. Church. A formulation of the simple theory of types,

*Symbolic Logic*, Vol. 5, pp 56–68, 1940.

Google Scholar8.

R.L. Constable et al. *Implementing Mathematics with the NuPrl Proof Development System*, Prentice-Hall, 1986.

9.

T. Coquand and G. Huet. The Calculus of Constructions,

*Information and Computation*, Vol. 76, pp 95–120, 1988.

CrossRefGoogle Scholar10.

H.B. Curry and R. Feys. *Combinatory Logic*, North Holland, 1958.

11.

G. Dowek and G. Huet. On the Definition of the *η*-long normal form in Type Systems of the Cube, submitted for publication.

12.

J.M. Dunn. Relevant Logic and Entailment, *Handbook of Philosophical Logic*, eds. D. Gabbay and F. Guenthner, Vol. 3, pp 117–224, 1984.

13.

P.A. Gardner. Representing *Logics in Type Theory*, Ph.D. Thesis, Edinburgh University, 1992.

14.

P.A. Gardner. *Equivalences between Logics and their Representing Type Theories*, full paper, submitted for publication.

15.

J.H. Geuvers. The Church-Rosser property for *βη*-reduction in typed lambda calculus, *Logic in Computer Science*, pp 453–460, 1992.

16.

J.Y. Girard. Linear Logic,

*Theoretical Computer Science*, Vol. 50, pp 1–102, 1987.

CrossRefGoogle Scholar17.

M.J.C. Gordon. HOL: A Proof Generating System for Higher-Order Logic. *VSLI* Specification, Verification and Syntiesis, ed.s Birtwistle and Subrahmanyam, Kluwer Academic Publishers, pp 73–128, 1987.

18.

R. Harper, F. Honsell and G. Plotkin. A Framework for Defining Logics,

*Association for Computing Machinery*, Vol. 40, Part 1, pp 143–184, 1992. Preliminary version in

*Logic in Computer Science*, pp 194–204, 1987.

Google Scholar19.

R. Harper, D. Sannella and A. Tarlecki. *Structure and Representation in LF*. Technical Report ECS-LFCS-89-75, Edinburgh University, 1989. Abridged version in *Logic in Computer Science*, pp 226–237, 1989.

20.

W.A. Howard. The Formulae-as-types Notion of Construction, in [31], pp 479–490, 1980.

21.

F.W. Lawvere. Equality in Hyperdoctrines and Comprehension Schema as an Adjoint Functor, *Applications of Categorical Algebra*, American Mathematical Society, pp 1–14, 1970.

22.

Z. Luo and R. Pollack. *LEGO Proof Development System: User's Manual*, Technical Report ECS-LFCS-92-211, Edinburgh University, 1992.

23.

P. Martin-Löf. *On the Meanings of the Logical Constants and the Justifications of the Logical Laws*, Technical Report 2, Università di Siena, 1985.

24.

D. Miller and G. Nadathur. Higher-order Logic Programming, *LNCS 225: 3rd International Logic Programming Conference* Springer, ed. Shapiro, pp 448–462, 1986.

25.

D. Miller, G. Plotkin and D. Pym *A Relevant Analysis of Natural Deduction*, in preparation.

26.

R. Paré and D. Schumacher. Abstract Families and the Adjoint Functor Theorems, *Indexed Categories and their Applications*, ed.s Johnstone and Paré, pp 1–125, 1978.

27.

L. Paulson. The Foundations of a Generic Theorem Prover, Automatic Reasoning, Vol. 5, pp 363–397, 1987.

CrossRefGoogle Scholar28.

D. Prawitz.

*Natural Deduction: A Proof-theoretical study*. Almquist and Wiksell, Stockholm, 1965.

Google Scholar29.

A Unification Algorithm for the *λΠ*-calculus, *Foundations of Computer Science*, Vol. 3, No. 3, pp 333–378, 1992.

30.

A. Salvesen. *The Church-Rosser Property for Pure Type Systems with βη reduction*, submitted for publication.

31.

J.P. Seldin and J.R. Hindley, editors. *To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism*, Academic Press, 1980.

32.

A. Simpson. Kripke Semantics for a Logical Framework, *1992 Workshop on Types for Proofs and Programs*, Båstad, 1992.