Advertisement

Parallel complexity of lattice basis reduction and a floating-point parallel algorithm

  • Christian Heckler
  • Lothar Thiele
Poster Session Regular Posters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 694)

Keywords

Parallel Algorithm Arithmetic Operation Systolic Array Floating Point Basis Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. M. Gentleman. Error analysis of QR decompositions by Givens transformations. Linear Algebra and Its Applications, 10:189–197, 1975.Google Scholar
  2. 2.
    C. Heckler. Parallele seminumerische Algorithmen. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 1993. In preparation.Google Scholar
  3. 3.
    C. Heckler and L. Thiele. A parallel lattice basis reduction for mesh-connected processor arrays and parallel complexity. to appear.Google Scholar
  4. 4.
    C. Heckler and L. Thiele. On the time complexity of parallel algorithms for lattice basis reduction. Technical Report 05/1993, SFB124, Universität Saarbrücken, Germany, 1993.Google Scholar
  5. 5.
    A.K. Lenstra, H.W. Lenstra Jr., and L. Lovasz. Factoring polynomials with rational coefficients. Math. Ann., 261:515–534, 1982.CrossRefGoogle Scholar
  6. 6.
    C.P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In Proceedings of the FCT'91 (Gosen, Germany), LNCS 529, pages 68–85. Springer, 1991.Google Scholar
  7. 7.
    U. Schwiegelshohn and L. Thiele. A systolic array for cyclic-by-rows Jacobi algorithms. Journal of Parallel and Distributed Computing, 4:334–340, 1987.Google Scholar
  8. 8.
    G. Villard. Parallel lattice basis reduction. In International Symposium on Symbolic and Algebraic Computation, Berbeley California USA, pages 269–277. ACM Press, 1992.Google Scholar
  9. 9.
    J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs, 1963.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Christian Heckler
    • 1
  • Lothar Thiele
    • 1
  1. 1.Lehrstuhl für MikroelektronikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations