Deterministic asynchronous automata for infinite traces

Extended abstract
  • Volker Diekert
  • Anca Muscholl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 665)


This paper shows the equivalence between the family of recognizable languages over infinite traces and deterministic asynchronous cellular Muller automata. We thus give a proper generalization of McNaughton's Theorem from infinite words to infinite traces. Thereby we solve one of the main open problems in this field. As a special case we obtain that every closed (w.r.t. the independence relation) word language is accepted by some I-diamond deterministic Muller automaton. We also determine the complexity of deciding whether a deterministic I-diamond Muller automaton accepts a closed language.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CMZ89]
    R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asynchronous cellular automata. Tech. rep. 89–97, LABRI, Univ. Bordeaux, 1989.Google Scholar
  2. [Die90]
    V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer Science. Springer, Berlin-Heidelberg-New York, 1990.Google Scholar
  3. [Eil74]
    S. Eilenberg. Automata, Languages and Machines, volume I. Academic Press, New York and London, 1974.Google Scholar
  4. [Gas91]
    P. Gastin. Recognizable and rational trace languages of finite and infinite traces. In Choffrut C. et al., editors, Proceedings of the 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS'91), Hamburg 1991, number 480 in Lecture Notes in Computer Science, pages 89–104. Springer, Berlin-Heidelberg-New York, 1991.Google Scholar
  5. [GP91]
    P. Gastin and A. Petit. Büchi (asynchronous) automata for infinite traces. Tech. rep., LRI, Université Paris-Sud, 1991.Google Scholar
  6. [GP92]
    P. Gastin and A. Petit. Asynchronous cellular automata for infinite traces. In W. Kuich, editor, Proceedings of the 19th International Colloquium on Automata Languages and Programming (JCALP'92), Vienna (Austria) 1992, Lecture Notes in Computer Science. Springer, Berlin-Heidelberg-New York, 1992. Also available as Tech. Rep. 91-68, LITP, Université Paris 6, France, 1991.Google Scholar
  7. [McN66]
    R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information and Control, 9:521–530, 1966.Google Scholar
  8. [PP91]
    D. Perrin and J.E. Pin. Mots Infinis. Technical Report, LITP 91.06, Université de Paris 6, 1991. Book to appear.Google Scholar
  9. [Tho90]
    W. Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Handbook of theoretical computer science, pages 133–191. Elsevier Science Publishers, 1990.Google Scholar
  10. [Zie87]
    W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O.-Informatique Théorique et Applications, 21:99–135, 1987.Google Scholar
  11. [Zie89]
    W. Zielonka. Safe executions of recognizable trace languages by asynchronous automata. In A. R. Mayer et al., editors, Proceedings Symposium on Logical Foundations of Computer Science, Logic at Botik '89, Pereslavl-Zalessky (USSR) 1989, number 363 in Lecture Notes in Computer Science, pages 278–289. Springer, Berlin-Heidelberg-New York, 1989.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Volker Diekert
    • 1
  • Anca Muscholl
    • 1
  1. 1.Institut für InformatikUniversität StuttgartStuttgart 80

Personalised recommendations