Limits on the power of parallel random access machines with weak forms of write conflict resolution

  • Faith E. Fich
  • Russell Impagliazzo
  • Bruce Kapron
  • Valerie King
  • Miroslaw Kutylowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 665)


Boolean Function Memory Cell Shared Memory Boolean Variable Parallel Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Borodin, J. Hopcroft, M. Paterson, L. Ruzzo, and M. Tompa, “Observations Concerning Synchronous Parallel Models of Computation”, manuscript, 1980.Google Scholar
  2. 2.
    S. Cook, C. Dwork, and R. Reischuk, “Upper and Lower Time Bounds for Parallel Random Access Machines without Simultaneous Writes”, SIAM J. Comput., volume 15, 1986, pages 87–97.Google Scholar
  3. 3.
    M. Dietzfelbinger, M. Kutyłowski, and R. Reischuk, “Exact Time Bounds for Computing Boolean Functions without Simultaneous Writes”, Proc. Second Annual ACM Symposium on Parallel Algorithms and Architectures, 1990, pages 125–135.Google Scholar
  4. 4.
    D. Eppstein and Z. Galil, “Parallel Algorithmic Techniques for Combinatorial Computing”, Ann. Rev. Comput. Sci., volume 3, 1988, pages 233–283.Google Scholar
  5. 5.
    F. Fich, P. Ragde, and A. Wigderson, “Relations Between Concurrent-Write Models of Parallel Computation”, SIAM J. Comput., volume 17, 1988, pages 606–627.Google Scholar
  6. 6.
    P. Fischer, and H. U. Simon, “On Learning Ring-Sum-Expansions”, Proc. Third Workshop on Computational Learning Theory, 1990, to appear in SIAM J. Comput.Google Scholar
  7. 7.
    S. Fortune and J. Wyllie, “Parallelism in Random Access Machines”, Proc. 10th Annual Symposium on Theory of Computing, 1978, pages 114–118.Google Scholar
  8. 8.
    L. Goldschlager, “A Unified Approach to Models of Synchronous Parallel Machines”, JACM, volume 29, 1982, pages 1073–1086.Google Scholar
  9. 9.
    V. Grolmusz and P. Ragde, “Incomparability in Parallel Computation”, Discrete Applied Mathematics, volume 29, no. 1, 1990, pages 63–78.Google Scholar
  10. 10.
    T. Hagerup, “Fast and Optimal Simulations between CRCW PRAMs”, Proc. 9th Annual Symposium on Theoretical Aspects of Computer Science, 1992, pages 45–48.Google Scholar
  11. 11.
    T. Hagerup, personal communication.Google Scholar
  12. 12.
    T. Hagerup and T. Radzik, “Every Robust CRCW PRAM can Efficiently Simulate a PRIORITY PRAM”, Proc. Second Annual ACM Symposium on Parallel Algorithms and Architectures, 1990, pages 117–124.Google Scholar
  13. 13.
    L. Kucera, “Parallel Computation and Conflicts in Memory Access”, Information Processing Letters, volume 14, 1982, pages 93–96.Google Scholar
  14. 14.
    R. Smolensky, “Algebraic methods in the theory of lower bounds for Boolean circuit complexity”, Proc. 19th Annual ACM Symposium on Theory of Computing, 1987, pages 77–82.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Faith E. Fich
    • 1
  • Russell Impagliazzo
    • 1
  • Bruce Kapron
    • 1
  • Valerie King
    • 1
  • Miroslaw Kutylowski
    • 2
  1. 1.University of TorontoCanada
  2. 2.Heinz Nixdorf InstitutUniversität PaderbornGermany

Personalised recommendations