General refinement and recursion operators for the Petri Box calculus

  • Eike Best
  • Raymond Devillers
  • Javier Esparza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 665)

Abstract

New generalised definitions are given for the refinement and recursion operators in the calculus of Petri Boxes. It is shown that not only recursion, but also other operators such as sequence, choice and iteration can be viewed as based on refinement. Various structural properties of these operators can be deduced from a general property of (simultaneous) refinement. A partial order based denotational approach for recursion is presented, which yields a unique fixpoint even in unguarded cases. The construction is based on a judicious naming discipline for places and transitions and yields a closed form for the fixpoint.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.C.M.Baeten and W.P.Weijland: Process Algebra. Cambridge Tracts in Theoretical Computer Science (1990).Google Scholar
  2. [2]
    E.Best, R.Devillers and J.Esparza: General Refinement and Recursion Operators for the Box Calculus. Hildesheimer Informatikbericht (December 1992).Google Scholar
  3. [3]
    E.Best, R.Devillers and J.Hall: The Box Calculus: a New Causal Algebra with Multi-label Communication. Advances in Petri Nets 1992. Springer-Verlag Lecture Notes in Computer Science Vol. 609, 21–69 (1992).Google Scholar
  4. [4]
    E.Best and H.G.Linde-Göers: Compositional Process Semantics of Petri Boxes. Hildesheimer Informatikbericht (December 1992).Google Scholar
  5. [5]
    G.Boudol and I.Castellani: Flow Models of Distributed Computations: Event Structures and Nets. Rapport de Recherche, INRIA, Sophia Antipolis (July 1991).Google Scholar
  6. [6]
    P.Degano, R. De Nicola and U.Montanari: A Distributed Operational Semantics for CCS Based on C/E Systems. Acta Informatica 26 (1988).Google Scholar
  7. [7]
    R.J.van Glabbeek and F.V.Vaandrager: Petri Net Models for Algebraic Theories of Concurrency. Proc. PARLE 89, Springer-Verlag Lecture Notes in Computer Science Vol. 259, 224–242 (1987).Google Scholar
  8. [8]
    U.Goltz: Über die Darstellung von CCS-Programmen durch Petrinetze. (In German.) R.Oldenbourg Verlag, GMD-Bericht Nr.172 (1988).Google Scholar
  9. [9]
    U.Goltz and R.J.van Glabbeek: Refinement of Actions in Causality Based Models. Proc. of REX Workshop on Stepwise Refinement of Distributed Systems, Springer-Verlag Lecture Notes in Computer Science, 267–300 (1989).Google Scholar
  10. [10]
    R.P.Hopkins, J.Hall and O.Botti: A Basic-Net Algebra for Program Semantics and its Application to occam. Advances in Petri Nets 1992. Springer-Verlag Lecture Notes in Computer Science Vol. 609, 179–214 (1992).Google Scholar
  11. [11]
    C.A.R.Hoare: Communicating Sequential Processes. Prentice Hall (1985).Google Scholar
  12. [12]
    R.Milner: Communication and Concurrency. Prentice Hall (1989).Google Scholar
  13. [13]
    E.R.Olderog: Nets, Terms and Formulas. Habilitation (1989). Cambridge Tracts in Theoretical Computer Science (1991).Google Scholar
  14. [14]
    D.Taubner: Finite Representation of CCS and TCSP Programs by Automata and Petri Nets. Springer-Verlag Lecture Notes in Computer Science Vol. 369 (1989).Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Eike Best
    • 1
  • Raymond Devillers
    • 2
  • Javier Esparza
    • 1
  1. 1.Institut für InformatikUniversität HildesheimGermany
  2. 2.Laboratoire d'Informatique ThéoriqueUniversité Libre de BruxellesBelgium

Personalised recommendations