Treewidth of chordal bipartite graphs

  • T. Kloks
  • D. Kratsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 665)

Abstract

Chordal bipartite graphs are exactly those bipartite graphs in which every cycle of length at least six has a chord. The treewidth of a graph G is the smallest maximum cliquesize among all chordal supergraphs of G decreased by one. We present a polynomial time algorithm for the exact computation of the treewidth of all chordal bipartite graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth. 8, 277–284, 1987.Google Scholar
  2. 2.
    S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12, 308–340, 1991.Google Scholar
  3. 3.
    H.L. Bodlaender, A tourist guide through treewidth, Technical report RUU-CS-92-12, Department of computer science, Utrecht University, Utrecht, The Netherlands, 1992. To appear in: Proceedings 7th, International Meeting of Young Computer Scientists, Springer Verlag, Lecture Notes in Computer Science.Google Scholar
  4. 4.
    H. Bodlaender, T. Kloks and D. Kratsch, Treewidth and pathwidth of permutation graphs, Technical report RUU-CS-92-30, Department of computer science, Utrecht University, Utrecht, The Netherlands, 1992.Google Scholar
  5. 5.
    H. Bodlaender and R.H. Möhring. The pathwidth and treewidth of cographs, In Proceedings 2nd Scandinavian Workshop on Algorithm Theory, 301–309, Springer Verlag, Lecture Notes in Computer Science vol. 447, 1990.Google Scholar
  6. 6.
    A. Brandstädt, Special Graph Classes—A Survey, Schriftenreihe des Fachbereichs Mathematik, SM-DU-199 1991, Universität Duisburg Gesamthochschule.Google Scholar
  7. 7.
    E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf parallele Algorithmen, Habilitationsschrift, Bonn, 1989.Google Scholar
  8. 8.
    M. Farber, Characterizations of strongly chordal graphs, Discrete Mathematics 43 173–189, 1983.Google Scholar
  9. 9.
    L. Goh and D. Rotem. Recognition of perfect elimination bipartite graphs, Information Processing Letters, 15, No. 4, 179–182, 1982.Google Scholar
  10. 10.
    M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.Google Scholar
  11. 11.
    J. Maloušek and R. Thomas, Algorithms Finding Tree-Decompositions of Graphs, Journal of Algorithms 12, 1–22, 1991.Google Scholar
  12. 12.
    R. Sundaram, K. Sher Singh and C. Pandu Rangan, Treewidth of circular are graphs, Manuscript 1991.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • T. Kloks
    • 1
  • D. Kratsch
    • 2
  1. 1.Department of Computer ScienceUtrecht UniversityTB UtrechtThe Netherlands
  2. 2.Fakultät MathematikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations