Cryptographic limitations on learning Boolean formulae and finite automata

  • Michael J. Kearns
  • Leslie G. Valiant
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 661)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Adleman, K. Manders, G. Miller. On taking roots in finite fields. Proc. 18th IEEE Symp. on Foundations of Computer Science, 1977, pp. 175–178.Google Scholar
  2. 2.
    D. Aldous. On the Markov chain simulation method for uniform combinatorial distributions and simulated annealing. U.C. Berkeley Statistics Department, technical report 60, 1986.Google Scholar
  3. 3.
    W. Alexi, B. Chor, O. Goldreich, C. P. Schnorr. RSA and Rabin functions: Certain parts are as hard as the whole. SIAM J. on Computing, 17(2) 1988, pp. 194–209.Google Scholar
  4. 4.
    D. Angluin. Lecture notes on the complexity of some problems in number theory. Yale University Computer Science Department, technical report TR-243, 1982.Google Scholar
  5. 5.
    D. Angluin. Learning regular sets from queries and counterexamples. Inf. and Computation, 75, 1987, pp. 87–106.Google Scholar
  6. 6.
    D. Angluin. Queries and concept learning. Machine Learning, 2, 1987, pp. 319–342.Google Scholar
  7. 7.
    D. Angluin, L. G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. of Computer and Systems Sciences, 18 1979, pp. 155–193.Google Scholar
  8. 8.
    P. W. Beame, S. A. Cook, H. J. Hoover. Log depth circuits for division and related problems. SIAM J. on Computing, 15 (4), 1986, pp. 994–1003.Google Scholar
  9. 9.
    G.M. Benedek, A. Itai. Learnability by fixed distributions. Proc. of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, 1988, pp. 80–90.Google Scholar
  10. 10.
    A. Blum. An O(n0.4)-approximation algorithm for 3-coloring. Proc. 21st ACM Symp. on Theory of Computing, 1989.Google Scholar
  11. 11.
    A. Blum, R. L. Rivest. Training a 3-node neural network is NP-complete. Proc. of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, 1988, pp. 9–18.Google Scholar
  12. 12.
    A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth. Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension. Proc. of the 18th ACM Symp. on Theory of Computing, 1986, pp. 273–282.Google Scholar
  13. 13.
    A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth. Occam's razor. Inf. Proc. Letters, 24 1987, pp. 377–380.Google Scholar
  14. 14.
    A.K. Chandra, L.J. Stockmeyer, U. Vishkin. Constant depth reducibility. SIAM J. on Computing, 13 (2), 1984, pp. 423–432.Google Scholar
  15. 15.
    H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23, 1952, pp. 493–509.Google Scholar
  16. 16.
    A. Ehrenfeucht, D. Haussler. Personal Communication.Google Scholar
  17. 17.
    A. Ehrenfeucht, D. Haussler, M. Kearns. L. G. Valiant. A general lower bound on the number of examples needed for learning. Information and Computation, to appear. Also in Proc. of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, 1988, pp. 139–154.Google Scholar
  18. 18.
    M. Garey, D. Johnson, Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco, CA, 1979.Google Scholar
  19. 19.
    E. M. Gold. Complexity of automaton identification from given data. Inf. and Control, 37, 1978, pp. 302–320.Google Scholar
  20. 20.
    O. Goldreich, S. Goldwasser, S. Micali. How to construct random functions. J. of the ACM, 33(4) 1986, pp. 792–807.Google Scholar
  21. 21.
    D. Haussler, M. Kearns, N. Littlestone, M. Warmuth. Equivalence of models for polynomial learnability. Proc. of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, 1988, pp 42–55.Google Scholar
  22. 22.
    D. Haussler, N. Littlestone, M. Warmuth. Predicting 0,1-functions on randomly drawn points. Proc. of the 29th IEEE Symp. on Foundations of Computer Science, 1988, pp. 100–109.Google Scholar
  23. 23.
    O. Ibarra, T. Jiang. Learning regular languages from counterexamples. First Workshop on Computational Learning Theory, 1988, pp. 371–385.Google Scholar
  24. 24.
    S. Judd. Learning in neural networks. Proc. of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, 1988, pp 2–8.Google Scholar
  25. 25.
    M. Kearns, M. Li, L. Pitt, L.G. Valiant. On the learnability of Boolean formulae. Proc. of the 19th ACM Symp. on Theory of Computing, 1987, pp. 285–295.Google Scholar
  26. 26.
    E. Kranakis. Primality and cryptography. John Wiley and Sons, 1986.Google Scholar
  27. 27.
    L. Levin. One-way functions and pseudorandom generators. Proc. of the 17th ACM Symp. on Theory of Computing, 1985, pp. 363–365.Google Scholar
  28. 28.
    M. Li, U. Vazirani. On the learnability of finite automata. First Workshop on Computational Learning Theory, 1988, pp. 359–370.Google Scholar
  29. 29.
    L. Pitt, M. K. Warmuth. Reductions among prediction problems: on the difficulty of predicting automata. Proc. 3d Conference on Structure in Complexity Theory, 1988, pp. 60–69.Google Scholar
  30. 30.
    L. Pitt, M. K. Warmuth. The Minimum DFA Consistency Problem Cannot be Approximated Within any Polynomial. Proc. 21st ACM Symp. on Theory of Computing, 1989.Google Scholar
  31. 31.
    L. Pitt, L. G. Valiant. Computational limitations on learning from examples. J. of the ACM, 35(4), 1988, pp. 965–984.Google Scholar
  32. 32.
    M. O. Rabin. Digital signatures and public key functions as intractable as factorization. M.I.T. Laboratory for Computer Science technical report TM-212, 1979.Google Scholar
  33. 33.
    J. Reif. On threshold circuits and polynomial computation. Proc. 2nd IEEE Conference on Structure in Complexity Theory, 1987.Google Scholar
  34. 34.
    R. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public key cryptosystems. Comm. of the ACM, 21(2) 1978, pp. 120–126.Google Scholar
  35. 35.
    L. G. Valiant. A theory of the learnable. Comm. of the ACM, 27(11) 1984, pp. 1134–1142.Google Scholar
  36. 36.
    L. G. Valiant. Learning disjunctions of conjunctions. Proc. 9th International Joint Conference on Artificial Intelligence, 1985, pp. 560–566.Google Scholar
  37. 37.
    L. G. Valiant. Functionality in neural nets. Proc. 1988 Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, 1988, pp. 28–39.Google Scholar
  38. 38.
    A. Wigderson. A new approximate graph coloring algorithm. Proc. 14th ACM Symp. on Theory of Computing, 1982, pp. 325–329.Google Scholar
  39. 39.
    A. C. Yao. Theory and application of trapdoor functions. Proc. 23rd IEEE Symp. on the Foundations of Computer Science, 1982, 80–91.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Michael J. Kearns
    • 1
  • Leslie G. Valiant
    • 2
  1. 1.AT&T Bell LaboratoriesMurray Hill
  2. 2.Aiken Computation LaboratoryHarvard UniversityCambridge

Personalised recommendations