Advertisement

Specifications with observable formulae and observational satisfaction relation

  • Teodor Knapik
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 655)

Keywords

Order Logic Indistinguishability Relation Predicate Symbol Satisfaction Condition Forgetful Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Bernot and M. Bidoit. Proving the correctness of algebraically specified software: Modularity and observability issues. In Proceedings of Second International Conference on Algebraic Methodology and Software Technology, pages 139–161, Iowa City, May 1991.Google Scholar
  2. [2]
    G. Bernot, M. Bidoit, and T. Knapik. Observational approaches and indistinguishability assumption. Technical Report LIENS-92-3, Laboratoire d'Informatique de l'Ecole Normale Supérieure, 1992.Google Scholar
  3. [3]
    G. Bernot, M. Bidoit, and T. Knapik. Towards an adequate notion of observation. In B. Krieg-Brückner, editor, European Syposium on Programming, LNCS 582, pages 39–55, Rennes, Feb. 1992.Google Scholar
  4. [4]
    M. Bidoit. The stratified loose approach: A generalization of initial and loose semantics. In D. Sannella and A. Tarlecki, editors, Recent Trends in Data Type Specification, LNCS 332, pages 1–22, Gullane, Sept. 1987. Selected papers from 5th Workshop on Specification of Abstract Data Types.Google Scholar
  5. [5]
    H. Ehrig, M. Baldamus, and F. Orejas. New concepts for amalgamation and extension in the framework of specification logics. Technical Report 91/05, Technische Universität Berlin, May 1991.Google Scholar
  6. [6]
    H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifications, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.Google Scholar
  7. [7]
    J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and programming. Technical Report ECS-LFCS-90-106, Department of Computer Science, University of Edinburgh, Jan. 1990.Google Scholar
  8. [8]
    J. A. Goguen and J. Meseguer. Persistent interconnection and implementation of abstract modules. In M. Nielsen and E. M. Schmidt, editors, ICALP, LNCS 140, pages 256–281, Aarhus, May 1982.Google Scholar
  9. [9]
    J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial approach to the specification, correctness and implementation of abstract data types. In R. T. Yeh, editor, Data Structuring, volume 4 of Current Trends in Programming Methodology, pages 80–149. Prentice Hall, 1978.Google Scholar
  10. [10]
    P. Nivela and F. Orejas. Initial behaviour semantics for algebraic specification. In D. Sannella and A. Tarlecki, editors, Recent Trends in Data Type Specification, LNCS 332, pages 184–207, Gullane, Sept. 1987. Selected papers from 5th Workshop on Specification of Abstract Data Types.Google Scholar
  11. [11]
    H. Reichel. Behavioural validity of conditional equations in abstract data types. In Contributions to General Algebra 3, pages 301–324, 1984. Proceedings of the Vienna Conference.Google Scholar
  12. [12]
    A. Salibra and G. Scollo. A soft stairway to institutions. In this volume.Google Scholar
  13. [13]
    D. Sannella and A. Tarlecki. On observational equivalence and algebraic specification. J. Comput. Syst. Sci., (34):150–178, 1987.Google Scholar
  14. [14]
    N. W. P. van Diepen. Implementation of modular algebraic specifications. In H. Ganzinger, editor, European Syposium on Programming, LNCS 300, pages 64–78, Nancy, Mar. 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Teodor Knapik
    • 1
  1. 1.LIENS CNRS URA 1327Paris Cedex 05France

Personalised recommendations