Advertisement

Metaprogramming through intensional deduction: Some examples

  • Luis Fariñas del Cerro
  • Andreas Herzig
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 649)

Abstract

Intensional logics have become a comprehensive framework for many domains of programming. In this paper we argue that metaprogramming is a natural application area of intensional systems, in the sense that intensional languages allow to capture many basic metalogical concepts.

Keywords

Logic Program Modal Logic Inference Rule Logic Programming Propositional Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alchourron et al. 85
    C. E. Alchourron, P. Gärdenfors and D. Makinson. On the Logic of Theory Change: Partial Meet Contractions and Revision Functions. The Journal of Symbolic Logic. 50. 2. pp 510–530, 1985.Google Scholar
  2. Alliot et al. 92
    Jean-Marc Alliot, Andreas Herzig, Mamede Lima Marques. Implementing Prolog Extensions: A Parallel Inference Machine. Proc. of the Int. Conf. on Fifth Generation Computer Systems (FGCS'92), 1992.Google Scholar
  3. Balbiani 91.
    Ph. Balbiani. Modal Logic and Negation as Failure, Journal of Logic and Computation 1 (1991) pp. 331–356.Google Scholar
  4. Balbiani et al. 88
    Philippe Balbiani, Mamede Lima Marques, Andreas Herzig. Declarative Semantics for Modal Logic Programs. Proc. of the Int. Workshop on Processing Declarative Knowledge (PDK'91). Springer Verlag, LNAI, 1991.Google Scholar
  5. Balbiani et al. 88
    Philippe Balbiani, Andreas Herzig, Mamede Lima Marques. TIM: The Toulouse Inference Machine for Nonclassical Logic Programming. Proc. of the Int. Conf. on Fifth Generation Computer Systems '88.Google Scholar
  6. Bieber et al. 88
    P. Bieber, L. Fariñas del Cerro and A. Herzig. MM: A modal logic for modules. Report LSI, Université Paul Sabatier Toulouse, 1988.Google Scholar
  7. Bibel et al. 89
    W. Bibel, L. Fariñas del Cerro, B. Fronhöfer and A. Herzig. Plan Generation by Linear Proofs:On Semantics. German Workshop on AI (GWAI 89). Springer Verlag 1989.Google Scholar
  8. Boolos 79.
    G. Boolos. The Unprovability of Inconsistency. Cambridge University Press, Cambridge, 1979.Google Scholar
  9. Boolos Sambin 92.
    G. Boolos and G. Sambin. Provability: the emergence of a mathematical modality, Studia Logica, to appear.Google Scholar
  10. Bowen Kowalski 82.
    K. A. Bowen and R.K. Kowalski. Amalgamating language and metalanguage. IN K.L.Clark and S. A. Tarnlund, editors Logic and Programming, Academic Press, Londin 1982 pp 153–172Google Scholar
  11. Chellas 75.
    B.F. Chellas. Basic conditional logic. J. of Philos. Logic, 4, 1975, pp 133–53.Google Scholar
  12. Dalai 88.
    M. Dalal. Investigations into Theory of Knowledge Bases Revision: Preliminary Report. Proc. of the Seventh Nat. Conf. on AI, Minneapolis pp 475–479. 1988.Google Scholar
  13. Fariñas 86.
    L. Fariñas del Cerro Molpg: A system that extends Prolog with modal logic. New Generation Computer Journal 1986.Google Scholar
  14. Fariñas Herzig 88.
    L. Fariñas del Cerro and A. Herzig. An automated modal logic for elementary changes. Non-Standard Logics for Automated Reasoning (ed. P Smets, A, Mandani, D. Dibois and H. Prade). Academic Press, 1988, pp 63–79.Google Scholar
  15. Fariñas Herzig 88.
    L. Fariñas del Cerro and A. Herzig. Constructive minimal changes. Draft, IRIT, april 1992.Google Scholar
  16. Fariñas Penton92.
    Intensional logics for Programming. L. Fariñas del Cerro and M. Pentonnen editors, Oxford University Press, 1992.Google Scholar
  17. Gabbay 91.
    D. M. Gabbay. Intensional Provability Foundations for Negation by Failure. In: P. Schröder-Heister (Ed.), Extensions of Logic Programming. Springer-Verlag, 1991, pp. 179–222.Google Scholar
  18. Gabbay Reyle 86.
    N-Prolog: An extension of Prolog with hypothetical implications. I. Journal of Logic Programming 4, 1984, 319–355.Google Scholar
  19. Gärdenfors 88.
    P. Gärdenfors. Knowlege in Flux. MIT Press, 1988.Google Scholar
  20. Ginsberg Smith 88.
    M. L. Ginsberg, D.E. Smith. Reasoning about action I: A possible world approach. Readings in Nonmonotonic Reasoning, M.L. Ginsberg ed., Morgan Kaufmann, 1987.Google Scholar
  21. Giordano et al. 88
    L. Giordano, A. Martelli, G.F. Rossi. Local definitions with static scope rules in logic languages. Proc. of the Int. Conf. on Fifth Generation Computer Systems. 1988.Google Scholar
  22. Giordano et al. 92
    L. Giordano, A. Martelli, G.F. Rossi. Extending horh clauses logic with implication goals. To appear in T.C.S.Google Scholar
  23. Grahne 91.
    G. Grahne. Updates and Counterfactuals. Principles of Knowlege Representation and Reasoning. Morgan and Kaufmann, 1991.Google Scholar
  24. Grove 86.
    A. Grove. Two modelings for Theory Change, Auckland Philosophy Papers 13, 1986.Google Scholar
  25. Hegner 87.
    S. Hegner. Specification and Implementation of Programs for Updating Incomplete Information Databases. Proc. of the Sixth Symp. on Principles of Database Systems. San Diego, pp 146–158, 1987.Google Scholar
  26. Hughes Cressw86.
    G. Hughes & M.J. Cresswell, A Companion to Modal Logic. Methuen & Co. Ltd., London, 1986.Google Scholar
  27. Lamma et al. 90
    E. Lamma, PK Mello, A. Natali, The design of an abstract machine for efficient implementation of contexts in logic programming. Proc. Sixth Int. Conf. on Logic Programming (ed. G. Levi, M. Martelli), The MIT Press, 1990, pp. 303–317.Google Scholar
  28. Lewis 73.
    D. K. Lewis. Counterfactuals. Blackwell, Oxford, 1973.Google Scholar
  29. Katsuno Mende 91.
    H. Katsuno and A.O. Mendelzon. On the Difference between Updating a Knowledge Base and Revising it. Principles of Knowledge Representation and Reasoning, Morgan Kaufmann 1991.Google Scholar
  30. Kurten 87.
    K. Kunen. Negation in Logic Programming. Journal of Logic Programming 4 (1987) pp. 289–308.Google Scholar
  31. Miller 86.
    D. A. Miller. A theory of modules for logic programming. in Proc. IEEE Symp. on Logic Programming 1986; pp 106–114.Google Scholar
  32. Montague 63.
    Montague, Syntactical treatements of modality with corollaries on reflexion principle and finite axiomatizability. Acta Philosophica Fennica, vol. 16, 1963.Google Scholar
  33. Monteiro Porto 87.
    L.Monteiro, A.Porto, Contextual Logic Programming. Proc. 6th Int. Conf. on Logic Programming, 1989, pp 284–299.Google Scholar
  34. Nute 80.
    Donald Nute. Topics in Conditional Logic. D. Reidel Publishing Company, 1980.Google Scholar
  35. Satoh 88.
    K. Satoh. Nonmonotonic Reasoning by Minimal Belief Revision. Proc. of the Int. Conf. on Fifth Generation Computer Systems. 1988, pp 455–462.Google Scholar
  36. Segerberg 86.
    Krister Segerberg. On the logic of small changes in theories, I. Auckland Philos. Papers, 1986.Google Scholar
  37. Seguin 92.
    Christel Seguin. De l'action à l'intention: Une caractérisation formelle des agents. Phd. thesis, Universié Paul Sabatier, Toulouse, march 1992.Google Scholar
  38. Shepherdson 88.
    J. Shepherdson. Negation in Logic Programming. In: J. Minker (Ed.), Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, Los Altos, 1988, pp. 19–88.Google Scholar
  39. Winslett 88.
    M. Winslett. Reasoning about actions. Proc. AAAI 1988, pp 89–93.Google Scholar
  40. Winslett 90.
    M. Winslett. Updating Logical Databases. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Luis Fariñas del Cerro
    • 1
  • Andreas Herzig
    • 1
  1. 1.RITUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations