Advertisement

Enantioselective epoxidation with peroxidic oxygen

  • Eugen Höft
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 164)

Abstract

Optically active epoxides are versatile and important intermediates for the preparation of homochiral oxygen-containing compounds. The main route to such optically active epoxides is the enantioselective epoxidation of olefins by reagents containing peroxidic oxygen. Besides the application of optically active oxidizing agents, hydrogen peroxide in the presence of optical auxiliaries, and molybdenum peroxo complexes with chiral ligands, the Sharpless epoxidation of allylic alcohols using t-butyl hydroperoxide in the presence of titanium isopropoxide and l-(+)- or d-(−)-dialkyl tartrate ester is the most practicable method for the preparation of homochiral epoxy alcohols. This development is reviewed briefly followed by own results concerning the Sharpless epoxidation of C5-allylic alcohols and the use of various hydroperoxides in this reaction. It is known that racemic allylic alcohols can be kinetically resolved by the asymmetric epoxidation procedure. Now preliminary results can be presented regarding the kinetic resolution of racemic hydroperoxides via Sharpless epoxidation and a new method for determining of the ratio of enantiomers in chiral hydroperoxides by HPLC is described.

Keywords

Kinetic Resolution Allylic Alcohol Epoxy Alcohol Asymmetric Epoxidation Peroxidic Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. 1.
    Ewins RC, Henbest HB, McKervey MA (1967) JCS Chem Commun 1085Google Scholar
  2. 1. a
    Montanari F, Moretti I, Torre G (1968) Boll Sci Fak Chim Ind Bologna 113Google Scholar
  3. 1. b
    Pirkle WH, Rinaldi PL (1977) J Org Chem 42: 2080Google Scholar
  4. 2.
    Payne GB, Deming PH, Williams PH (1961) J Org Chem 26: 659Google Scholar
  5. 3.
    Ben Hassine B, Gorsane M, Geerts-Evrard F, Pecher J, Martin RH, Castelet D (1986) Bull Soc Chim Belg 95: 547Google Scholar
  6. 4.
    Helder R, Hummelen JC, Laane RWPM, Wiering JS, Wynberg H (1976) Tetrahedron Lett 1831Google Scholar
  7. 5.
    Pluim H, Wynberg H (1980) J Org Chem 45: 2498Google Scholar
  8. 6.
    Juliá S, Masana J, Vega JC (1980) Angew Chem 92: 968Google Scholar
  9. 6. a
    Juliá S, Guixer JG, Masana J, Rocas J, Colonna S, Annuziata R, Molinari H (1982) JCS Perkin Trans I: 1317Google Scholar
  10. 7.
    Baures PW, Eggleston DS, Flisak JR, Gombatz K, Lantos I, Mendelson W, Remich JJ (1990) Tetrahedron Lett 31: 6501Google Scholar
  11. 8.
    Kagan HB, Mimoun H, Mark C, Schurig V (1979) Angew Chem 91: 511Google Scholar
  12. 9.
    Schurig V, Hintzer K, Leyrer U, Mark C, Pitchen P, Kagan HB (1989) J Organomet Chem 370: 81Google Scholar
  13. 10.
    Adam W, Curci R, Edwards JO (1989) Acc Chem Res 22: 205Google Scholar
  14. 11.
    Curci R, Fiorentino M, Serio MR (1984) JCS Chem Commun 155Google Scholar
  15. 12.
    Döbler Ch, Höft E (1978) Z Chem 18: 218Google Scholar
  16. 13.
    Katsuki T, Sharpless KB (1980) J Am Chem Soc 102: 5974Google Scholar
  17. 14.
    Gao Y, Hanson RM, Klunder JM, Ko SY, Masamune H, Sharpless KB (1987) J Am Chem Soc 109: 5765Google Scholar
  18. 15.
    Sharpless KB (1988) Janssen Chim Acta 6: 3Google Scholar
  19. 16.
    Adam W, Griesbeck A, Staab E (1986) Tetrahedron Lett 27: 2839Google Scholar
  20. 17.
    Finn MG, Sharpless KB (1985) In: Morrison JD (ed) Asymmetric synthesis, vol 5, Academic, New York, p 247Google Scholar
  21. 18.
    Corey EJ (1990) J Org Chem 55: 1693Google Scholar
  22. 19.
    Woodard SS, Finn MG, Sharpless KB (1991) J Am Chem Soc 113: 106Google Scholar
  23. 19. a
    Finn MG, Sharpless KB (1991) J Am Chem Soc 113: 113Google Scholar
  24. 20.
    Rossiter BE (1985) In: Morrison JD (ed) Asymmetric synthesis, vol 5, Academic, New York, p 193Google Scholar
  25. 20. a
    Pfenninger A (1986) Synthesis 89Google Scholar
  26. 20. b
    Höft E, Hamann HJ (1987) Mitteilungsbl Chem Ges DDR 34: 10Google Scholar
  27. 21.
    Takano S, Iwabuchi Y, Ogasawara K (1991) Tetrahedron Lett 32: 3527Google Scholar
  28. 22.
    Höft E, Hamann HJ, Rüffer L, Jáky M (1991) In: Simándi LI (ed) Dioxygen activation and homogeneous catalytic oxidation, Elsevier, Amsterdam, p 537Google Scholar
  29. 23.
    Finn MG, Sharpless KB (1985) In: Morrison JD (ed) Asymmetric synthesis, vol 5, Academic, New York, p 267Google Scholar
  30. 24.
    König, WA (1989) Nachr Chem Tech Lab 37: 471Google Scholar
  31. 25.
    Kunath A, Höft E, Hamann HJ, Wagner J (1991) J Chromatogr 588: 352Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Eugen Höft
    • 1
  1. 1.Central Institute of Organic ChemistryBerlin-AdlershofFRG

Personalised recommendations