Advertisement

The optics of an interferometric gravitational-wave antenna

  • W. Winkler
  • colleagues of GEO
Gravitational Waves
Part of the Lecture Notes in Physics book series (LNP, volume 410)

Abstract

The basic concept of an interferometric gravitational wave detector, the realization of the long light path with optical delay lines or with Fabry-Perot cavities, and the need for high light power are described. The techniques for improving the sensitivity, recycling and squeezed states of light, are considered and the consequences on the specifications of the optical components are shown. The specifications are explicitly given and particularly the influence of thermal effects is treated quantitatively.

Keywords

Gravitational Wave Delay Line Light Path Thermal Lens Path Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Siegmann, Lasers (University Science Books, Mill Valley, 1986).Google Scholar
  2. 2.
    The Detection of Gravitational Radiation, edited by D. Blair (Cambridge University Press, 1991)Google Scholar
  3. 3.
    D. Herriot, H. Kogelnik, and R. Kompfner, Appl. Opt. 3, 523 (1964).Google Scholar
  4. 4.
    W. Winkler, in The Detection of Gravitational Radiation, edited by D. Blair (Cambridge University Press, 1991).Google Scholar
  5. 5.
    C. N. Man, A. Brillet, Lecture Notes in Physics 212, 222 (1984).Google Scholar
  6. 6.
    C. N. Man, A. Brillet, Opt. Lett. 9, 333 (1984).Google Scholar
  7. 7.
    B. J. Meers, Phys. Rev. D 38, 2317 (1988).CrossRefGoogle Scholar
  8. 8.
    C. M. Caves, Phys. Rev. D 23, 1693 (1981).CrossRefGoogle Scholar
  9. 9.
    M. Xiao, L. A. Wu, and H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).PubMedGoogle Scholar
  10. 10.
    P. Grangier, R. E. Slusher, B. Yurke, and A. La Porta, Phys. Rev. Lett. 59, 2153 (1987).PubMedGoogle Scholar
  11. 11.
    J. Gea-Banacloche and G. Leuchs, J. Mod. Opt. 36, 1277 (1989).Google Scholar
  12. 12.
    W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, Phys. Rev. A, 44, 7022 (1991).PubMedGoogle Scholar
  13. 13.
    K. Freischlad, M. Küchel, W. Wiedmann, W. Kaiser and M. Mayer, Proc. SPIE 1332, 8, (1990).CrossRefGoogle Scholar
  14. 14.
    P. Hello and J. Y. Vinet, J. Phys. (France) 51, 2243 (1990).Google Scholar
  15. 15.
    M. A. Olmstead, N. M. Amer, and S. Kohn, Appl. Phys. A 32, 141 (1983).CrossRefGoogle Scholar
  16. 16.
    A. C. Boccara, D. Fournier, W. Jackson, and N. M. Amer, Opt. Lett. 5, 377 (1980).Google Scholar
  17. 17.
    N. Man, private communicationGoogle Scholar
  18. 18.
    M. Engl, Diplomarbeit, (Garching, 1991), unpublished.Google Scholar
  19. 19.
    A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, Optica Acta 28, 641 (1981).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • W. Winkler
    • 1
  • colleagues of GEO
    • 1
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations