Advertisement

Dataflow semantics for Petri nets

  • Robert Gold
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 629)

Abstract

We give a semantics for place/transition nets, which describes the input/output behaviour using fixed point techniques. The semantics is shown to be compositional w.r.t. parallel composition, feedback and output merging. We prove consistency with the step sequence semantics.

Keywords

Step Sequence Parallel Composition Concurrent System Input Place Firing Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BA81]
    Brock, J.D.; Ackerman, W.B.: Scenarios: A model of non-determinate computation. In: Diaz, J.; Ramos, I. (eds.), Proc. of the International Colloquium on Formalization of Programming Concepts, Peniscola 1981, LNCS 107, pp. 252–259, Springer (1981)Google Scholar
  2. [Bro88]
    Broy, M.: Nondeterministic data flow programs: how to avoid the merge anomaly. Science of Computer Programming 10, pp. 65–85 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  3. [BRR87]
    Brauer, W.; Reisig, W.; Rozenberg, G. (eds.): Petri nets: central models and their properties. LNCS 254, Springer (1987)Google Scholar
  4. [BS90]
    Broy, M.; Streicher, T.: Modular functional modelling of Petri nets with individual tokens. TU München, Inst. für Informatik, Report No. TUM-19035 (1990)Google Scholar
  5. [Gol91]
    Gold, R.: Dataflow semantics for Petri nets. TU München, Inst. für Informatik, Report No. TUM-I9107 (1991)Google Scholar
  6. [GS90]
    Gunter, C.A.; Scott, D.S.: Semantic domains. In: van Leeuwen, J. (ed.), Formal Models and Semantics, Handbook of Theoretical Computer Science, Volume B, pp. 633–674, Elsevier (1990)Google Scholar
  7. [HP72]
    Hitchcock, P.; Park, D.: Induction rules and termination proofs. In: Nivat, M. (ed.), Proc. of the Symposium on Automata, Languages and Programming, pp. 225–251, North-Holland (1972)Google Scholar
  8. [Jon89]
    Jonsson, B.: A fully abstract trace model for dataflow networks. In: Proc. of the 16th Annual ACM Symposium on Principles of Programming Languages, Austin 1989, pp. 155–165 (1989)Google Scholar
  9. [Kah73]
    Kahn, G.: A preliminary theory for parallel programs. IRIA Rapport de Recherche 6 (1973)Google Scholar
  10. [Kel78]
    Keller, R.M.: Denotational models for parallel programs with indeterminate operators. In: Neuhold, E.J. (ed.), Formal Description of Programming Concepts, pp. 337–366, North-Holland (1978)Google Scholar
  11. [Mis90]
    Misra, J.: Equational reasoning about nondeterministic processes. Formal Aspects of Computing 2, pp. 167–195 (1990)zbMATHCrossRefGoogle Scholar
  12. [Rei80]
    Reisig, W.: On solving conflicts in Petri nets. In: Pape, U. (ed.), Discrete Structures and Algorithms, pp. 241–253, Hanser (1980)Google Scholar
  13. [Rei85]
    Reisig, W.: Petri nets. Springer (1985)Google Scholar
  14. [Tau88]
    Taubner, D.: Zur verteilten Implementierung von Petrinetzen. Informationstechnik 30, pp. 357–370 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Robert Gold
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2

Personalised recommendations