A perfect parallel dictionary

  • Holger Bast
  • Martin Dietzfelbinger
  • Torben Hagerup
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 629)

Abstract

We describe new randomized parallel algorithms for the problems of interval allocation, construction of static dictionaries, and maintenance of dynamic dictionaries. All of our algorithms run optimally in constant time with high probability. Our main result is the construction of what we call a perfect dictionary, a scheme that allows p processors implementing a set M in space proportional to ¦M¦ to process batches of p insert, delete, and lookup instructions on M in constant time pet batch.

Our best results are obtained for a new variant of the CRCW PRAM model of computation called the OR PRAM. For other variants of the CRCW PRAM we show slightly weaker results, with some resource bounds increased by a factor of ⊖(logkn), where k ∈ ℕ is fixed but arbitrarily large.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BH91]
    H. Bast and T. Hagerup, Fast and Reliable Parallel Hashing, manuscript. A preliminary version appeared in Proc. 3rd SPAA (1991), pp. 50–61.Google Scholar
  2. [BV89]
    O. Berkman and U. Vishkin, Recursive *-Tree Parallel Data-Structure, in Proc. 30th FOCS (1989), pp. 196–202.Google Scholar
  3. [CV86]
    R. Cole and U. Vishkin, Deterministic Coin Tossing and Accelerating Cascades: Micro and Macro Techniques for Designing Parallel Algorithms, in Proc. 18th STOC (1986), pp. 206–219.Google Scholar
  4. [DM92]
    M. Dietzfelbinger and F. Meyer auf der Heide, Dynamic Hashing in Real Time, in Informatik: Festschrift zum 60. Geburtstag von Günter Hotz (1992), Teubner-Texte zur Informatik, Band 1, Teubner, Stuttgart (a preliminary version appeared in Proc. 17th ICALP (1990), Springer LNCS, Vol. 443, pp. 6–19).Google Scholar
  5. [FKS84]
    M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a Sparse Table with O(1) Worst Case Access Time, J. ACM 31 (1984), pp. 538–544.MATHCrossRefGoogle Scholar
  6. [GMV91]
    J. Gil, Y. Matias, and U. Vishkin, Towards a Theory of Nearly Constant Time Parallel Algorithms, in Proc. 32nd FOCS (1991), pp. 698–710.Google Scholar
  7. [G91]
    M. T. Goodrich, Using Approximation Algorithms to Design Parallel Algorithms that May Ignore Processor Allocation, in Proc. 32nd FOCS (1991), pp. 711–722.Google Scholar
  8. [GR87]
    V. Grolmusz and P. Ragde, Incomparability in Parallel Computation, in Proc. 28th FOCS (1987), pp. 89–98.Google Scholar
  9. [H91]
    T. Hagerup, Fast Parallel Space Allocation, Estimation and Integer Sorting, Tech. Rep. No. MPI-I-91-106 (1991), Max-Planck-Institut für Informatik, Saarbrücken.Google Scholar
  10. [H92]
    T. Hagerup, The Log-Star Revolution, in Proc. 9th STACS (1992), Springer LNCS, Vol. 577, pp. 259–278.MathSciNetGoogle Scholar
  11. [M92]
    P. D. MacKenzie, Load Balancing Requires Ω(log* n) Expected Time, in Proc. 3rd SODA (1992), pp. 94–99.Google Scholar
  12. [MV91]
    Y. Matias and U. Vishkin, On Parallel Hashing and Integer Sorting, J. Alg. 12 (1991), pp. 573–606.MATHMathSciNetGoogle Scholar
  13. [SV82]
    Y. Shiloach and U. Vishkin, An O(log n) Parallel Connectivity Algorithm, J. Alg. 3 (1982), pp. 57–67.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Holger Bast
    • 1
  • Martin Dietzfelbinger
    • 2
  • Torben Hagerup
    • 3
  1. 1.Fachbereich InformatikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Fachbereich 17 · Mathematik-Informatik and Heinz-Nixdorf-InstitutUniversität-GH PaderbornPaderbornGermany
  3. 3.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations