[1]

S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey.

*BIT*, 25:2–23, 1985.

Google Scholar[2]

S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.

*SIAM J. Alg. Discr. Meth.*, 8:277–284, 1987.

Google Scholar[3]

S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph reduction. Technical Report 90-02, Laboratoire Bordelais de Recherche en Informatique, Bordeaux, 1990. To appear in Proceedings 4th Workshop on Graph Grammars and Their Applications to Computer Science.

[4]

S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs

*J. Algorithms*, 12:308–340, 1991.

CrossRefGoogle Scholar[5]

S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial

*k*-trees.

*Disc. Appl. Math.*, 23:11–24, 1989.

CrossRefGoogle Scholar[6]

H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded tree-width. In *Proceedings of the 15'th International Colloquium on Automata, Languages and Programming*, pages 105–119. Springer Verlag, Lecture Notes in Computer Science volume 317, 1988.

[7]

H. L. Bodlaender and T. Kloks.

*A simple linear time algorithm for triangulating three-colored graphs*. Technical Report RUU-CS-91-13, Department of Computer Science, Utrecht University, the Netherlands, 1991. To appear in: Proceedings STACS'92.

Google Scholar[8]

H.L. Bodlaender and T. Kloks. Better algorithms for the pathwidth and treewidth of graphs. In *Proceedings 18'th International Colloquium on Automata, Languages and Programming*, pages 544–555. Springer Verlag, Lecture Notes in Computer Science volume 510, 1991.

[9]

H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs. In *Proceedings 2nd Scandinavian Workshop on Algorithm Theory*, pages 301–309. Springer Verlag Lecture Notes in Computer Science volume 447, 1990.

[10]

K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms.

*J. Comp. Syst. Sc.*, 13:335–370, 1976.

Google Scholar[11]

R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear algorithms from predicate calculus descriptions of problems on recursive constructed graph families. Manuscript, 1988.

[12]

P. Buneman. A characterization of rigid circuit graphs.

*Discrete Math.* 9:205–212, 1974.

CrossRefGoogle Scholar[13]

J. Camin and R. Sokal,

*A method for deducing branching sequences in phylogeny*, Evolution 19, (1965), pp. 311–326.

Google Scholar[14]

B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.

*Information and Computation*, 85:12–75, 1990.

CrossRefGoogle Scholar[15]

G. A. Dirac. On rigid circuit graphs.

*Abh. Math. Sem. Univ. Hamburg*, 25: 71–76, 1961.

Google Scholar[16]

G.F. Estabrook,

*Cladistic Methodology: a discussion of the theoretical basis for the induction of evolutionary history*, Annu. Rev. Evol. Syst., 3 (1972), pp. 427–456.

CrossRefGoogle Scholar[17]

G.F. Estabrook, C.S. Johnson, Jr. and F.R. McMorris,

*An idealized concept of the true cladistic character*, Math. Biosci. 23, 1975, pp. 263–272.

CrossRefGoogle Scholar[18]

G.F. Estabrook, C.S. Johnson, Jr., and F.R. McMorris,

*An algebraic analysis of cladistic characters*, Discrete Math., 16, 1976, pp. 141–147.

CrossRefGoogle Scholar[19]

G.F. Estabrook, C.S. Johnson, Jr., and F.R. McMorris,

*A mathematical foundation for the analysis of cladistic character compatibility*, Math. Biosci., 29, 1976, pp. 181–187.

CrossRefGoogle Scholar[20]

M. R. Fellows and K. Abrahamson, *Cutset-Regularity Beats Well-Quasi-Ordering for Bounded Treewidth*. Manuscript, Nov. 1989.

[21]

J. Felsenstein. Numerical methods for inferring evolutionary trees. *The Quaterly Review of Biology*, Vol. 57, No. 4, Dec. 1982.

[22]

W. M. Fitch and E. Margoliash. The construction of phylogenetic trees. *Science*, 155, 1967.

[23]

L. R. Foulds, and R. L. Graham, The Steiner problem in phytogeny is NP-Complete.

*Advances in Applied Mathematics*, 3:43–49, 1982.

CrossRefGoogle Scholar[24]

D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.

*Pacific J. Mathematics*, 15:835–855, 1965.

Google Scholar[25]

F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.

*J. Combinatorial Theory series B*, 16:47–56, 1974.

CrossRefGoogle Scholar[26]

M. C. Golumbic.

*Algorithmic Graph Theory and Perfect Graphs*. Academic Press, New York, 1980.

Google Scholar[27]

D. Gusfield. *The Steiner tree problem in phylogeny*. Technical Report 332, Department of Computer Science, Yale University, Sept. 1984.

[28]

D. Gusfield. Efficient algorithms for inferring evolutionary trees.

*Networks*, 21:19–28, 1991.

Google Scholar[29]

A. Habel. *Hyperedge Replacement: Grammars and Languages*. PhD thesis, Univ. Bremen, 1988.

[30]

S. Kannan and T. Warnow. Triangulating three-colored graphs. In *Proceedings Second Annual ACMSIAM Symp. on Discrete Algorithms*, pages 337–343, San Francisco, Jan. 1991. Also to appear in SIAM J. on Discrete Mathematics.

[31]

S. Kannan and T. Warnow. Inferring evolutionary history from DNA sequences. In *Proceedings 31st Annual Symposium on the Foundations of Computer Science*, pages 362–371, St. Louis, Missouri, 1990.

[32]

J. Lagergren.

*Algorithms and Minimal Forbidden Minors for Tree-decomposable Graphs*. PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 1991.

Google Scholar[33]

C. Lautemann. Efficient algorithms on context-free graph languages. In *Proceedings of the 15th International Colloquium on Automata, Languages and Programming*, pages 362–378, 1988. Springer Verlag Lectures Notes in Computer Science volume 317.

[34]

C. G. Lekkerkerker and J. Ch. Boland. Representations of a finite graph by a set of intervals on the real line,

*Fund. Math.* 51:45–64, 1962.

Google Scholar[35]

W. J. LeQuesne. The uniquely evolved character concept and its cladistic application,

*Syst. Zool.*, 23:513–517, 1974.

Google Scholar[36]

W. J. LeQuesne. The uniquely evolved character concept.

*Syst. Zool.*, 26:218–223, 1977.

Google Scholar[37]

W.J. LeQuesne,

*A method of selection of characters in numerical taxonomy*, Syst. Zool., 18, pp. 201–205, 1969.

Google Scholar[38]

W.J. LeQuesne,

*Further studies on the uniquely derived character concept*, Syst. Zool., 21, pp. 281–288, 1972.

Google Scholar[39]

W.J. LeQuesne,

*The uniquely evolved character concept and its cladistic application*, Syst. Zool., 23, pp. 513–517, 1974.

Google Scholar[40]

W.J. LeQuesne,

*Discussion of preceeding papers*, In G.F. Estabrook (ed.),

*Proc. Eighth International Conference on Numerical Taxonomy*, pp. 416–429. W.H. Freeman, San Francisco, 1975.

Google Scholar[41]

W.J. LeQuesne,

*The uniquely evolved character concept*, Syst. Zool., 26, pp. 218–223, 1977.

Google Scholar[42]

F. R. McMorris. Compatibility criteria for cladistic and qualitative taxonomic characters. In

*Proceedings 8th Internatinal Conference on Numerical Taxonomy*, G.F. Estrabrook, ed., pp. 339–415. W.H. Freeman, San Francisco, 1975.

Google Scholar[43]

F. R. McMorris. On the compatibility of binary qualitative taxonomic characters.

*Bull. Math. Biol.*, 39:133–138, 1977.

PubMedGoogle Scholar[44]

F. R. McMorris and C. A. Meacham. Partition intersection graphs.

*Ars Combinatorica*, 16-B:135–138, 1983.

Google Scholar[45]

F. R. McMorris, T. Warnow, and T. Wimer. *Triangulating colored graphs*. Submitted to Information Processing Letters.

[46]

C. A. Meacham and G. F. Estabrook. Compatibility methods in systematics.

*Annual Review of Ecology and Systematics*, 16:431–446, 1985.

CrossRefGoogle Scholar[47]

C. A. Meacham. Evaluating characters by character compatibility analysis. In: T. Duncan and T. F. Stuessy (eds.),

*Cladistics: Perspectives on the estimation of evolutionary history*, pp. 152–165. Columbia Univ. Press: New York, 1984.

Google Scholar[48]

C. A. Meacham. Theoretical and computational considerations of the compatibility of qualitative taxonomic characters. In: J. Felsenstein (ed.),

*Numerical Taxonomy*, pages 304–314. NATO ASI Series, volume G1. Springer-Verlag: Berlin, Heidelberg, 1983.

Google Scholar[49]

A. Proskurowski. Separating Subgraphs in k-trees: Cables and Caterpillars.

*Discrete Math.*, 49:275–285, 1984.

CrossRefGoogle Scholar[50]

B. Reed. Finding approximate separators and computing treewidth quickly. Manuscript, 1992. To appear in: Proceedings of the 24'th Annual Symposium on Theory of Computing STOC'92.

[51]

N. Robertson and P. D. Seymour. *Graph minors XIII: The disjoint path problem*. Manuscript, September 1986.

[52]

D. J. Rose. Triangulated graphs and the elimination process.

*J. Math. Anal. Appl.*, 32:597–609, 1970.

CrossRefGoogle Scholar[53]

D. J. Rose. On simple characterization of k-trees.

*Discrete Math.*, 7:317–322, 1974.

CrossRefGoogle Scholar[54]

P. Scheffler. Linear-time algorithms for NP-complete problems restricted to partial k-trees. Report R-MATH-03/87, Karl-Weierstrass-Institut Für Mathematik, Berlin, GDR, 1987.

Google Scholar[55]

R. R. Sokal and P. H. A. Sneath.

*Principles of Numerical Taxonomy*. W.H. Freeman, San Francisco, 1963.

Google Scholar[56]

R. E. Tarjan.

*Data Structures and Network Algorithms*. Society for Industrial and Applied Mathematics, Philadelphia, 1983.

Google Scholar[57]

J. R. Walter. *Representations of Rigid Circuit Graphs*. Ph.D. thesis, Wayne State University.

[58]

E. O. Wilson. A Consistency Test for Phylogenies Based upon Contemporaneous Species. *Systematic Zoology*, 14:214–220.

[59]

T. V. Wimer. *Linear algorithms on k-terminal graphs*. PhD thesis, Dept. of Computer Science, Clemson University, 1987.