Advertisement

Diagnostic cognitif de l'apprenant par apprentissage symbolique

  • Malika Talbi
  • Michelle Joab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 608)

Résumé

Certains Environnements Interactifs d'Apprentissage par Ordinateur utilisent aujourd'hui les techniques d'apprentissage automatique pour modéliser l'apprenant. Dans cette communication, nous proposons un module de diagnostic qui intègre plusieurs techniques d'apprentissage automatique pour construire automatiquement le modèle de l'apprenant. Le module de diagnostic repère les connaissances procédurales, correctes ou erronées, que l'apprenant a utilisé lors de sa résolution. Il engendre des généralisations des productions de l'apprenant tout en contrôlant leur vraisemblance. Il analyse les contextes d'application pour délimiter précisément la partie “condition” des règles erronées de l'apprenant.

Keywords

Nous Avons Intelligent Tutor System Learn Issue Artificial Intelligence Approach Cognitive Diagnosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    J.S. Brown, K. VanLehn: Repair Theory: a Generative Theory of Bugs in Procedural Skills. Cognitive Science, Vol 4, pp 367–426, 1980Google Scholar
  2. 2.
    R.R. Burton: DEBUGGY: Diagnosis of Errors in Basic Mathematical Skills. Intelligent Tutoring Systems, pp 157–183, Sleeman D.H.et Brown J.S. (Eds), Academic Press, 1982Google Scholar
  3. 3.
    E. Cauzinille-Marmèche, M. Joab, J. Mathieu, N. Monteils: Explicitation et Représentation des Connaissances des Elèves de Collège en Algèbre. Didactique et Acquisistion des Connaissances Scientifiques, La pensée sauvage, Paris, 1988Google Scholar
  4. 4.
    J.A. Escott, G. McCalla: Problem Solving Analogy: A Source of Errors in Novice Lisp Programming. Intelligent Tutoring Systems, Montréal, 1–3 Juin, pp 312–319, 1988Google Scholar
  5. 5.
    J.D. Ganon: Characteristic Errors in Programming Languages. Proceedings of 1978 Annual Conference of the ACM, Washinton DC, pp 570–575, 1978Google Scholar
  6. 6.
    D. Gentner D: Structure-Mapping: A Theoretical Framework for Analogy. Cognitive Science, 7, pp 155–170, 1983Google Scholar
  7. 7.
    R.P. Hall: Computational Approaches to Analogical Reasoning: A Comparative Analysis. Artificial Intelligence, 39, pp 39–120, 1989Google Scholar
  8. 8.
    M. Joab: Le Système NAIADE: Modélisation des Connaissances et de leur Utilisation dans la Résolution de Problèmes. Intelligent Tutoring Systems, Montréal, 1988Google Scholar
  9. 9.
    M. Joab: Modélisation d'un Dialogue Pédagogique en Langage Naturel. Thèse de Doctorat, Université Paris 6, 1990Google Scholar
  10. 10.
    W.L. Johnson, S. Draper, E. Soloway: Classifying Bugs is a Tricky Business. 7th Annual NASA/Goddard Workshop on software Engineering, Baltimore, 1982Google Scholar
  11. 11.
    W.L. Johnson, E. Soloway, Cutler, S.W. Draper: Bug Catalogue I. Technical Report 286, Department of Computer Science, Yale University, 1983Google Scholar
  12. 12.
    Y. Kodratoff Y: Introduction to Machine Learning. Pitman Publishing, 1988Google Scholar
  13. 13.
    P. Langley, G.L. Bradshaw, H.A. Simon: Rediscovering Chemistry With the BACON System. Machine Learning: an Artificial Intelligence Approach, Springer Verlag, 1983Google Scholar
  14. 14.
    P. Langley, S. Ohlsson: Automated Cognitive Modeling. National Conference on Artificial Intelligence, Austin, Texas, pp 193–197, 1984Google Scholar
  15. 15.
    D. Lenat: The Role of Heuristics. Learning by Discovery: three Case Studies in Machine Learning: an Artificial Intelligence Approach, pp 243–302, Springer Verlag, 1983Google Scholar
  16. 16.
    C.H. Lu: Apprentissage Incremental par Analogie: Le système OGUST+. Thèse de Doctorat de l'Université de Paris Sud, 1989Google Scholar
  17. 17.
    S. Ohlsson, P. Langley: Psychological Evaluation of Path Hypotheses in Cognitive Diagnosis. Learning Issues for Intelligent Tutoring Systems, Mandl H. et Lesgold, 1988Google Scholar
  18. 18.
    O. Paliès: Métaconnaissances pour l'Aide au Diagnostic Cognitif de l'élève. Thèse de l'Université Pierre et Marie Curie, 1988Google Scholar
  19. 19.
    N. Rodriguez: Diagnostic et Correction des Erreurs en Algèbre, D.E.S.S. IA, Paris 6, 1988Google Scholar
  20. 20.
    J.A. Self: Bypassing the Intractable Problem of Student Modeling. Intelligent Tutoring Systems, Montréal, 1–3 Juin, pp 18–24, 1988Google Scholar
  21. 21.
    J.A. Self J: Formal Approaches to Learner Modelling, Technical Report AI-59, Department of Computing, Lancaster University, 1991Google Scholar
  22. 22.
    D.H. Sleeman: PIXIE: a Shell for Developing Intelligent Tutoring Systems. AI and Education: Learning Environments and Intelligent Tutoring Systems, Ablex, 1987Google Scholar
  23. 23.
    E. Soloway, E. Rubin, B. Woolf, J. Bonar, L. Johnson L: MENO II: An AI-Based Programming Tutor. Journal of Computer-Based Instruction, vol 10, n∘1, pp 20–34, 1983Google Scholar
  24. 24.
    J.C. Spohrer, E. Pope, M. Lipman, W. Sack, S. Freiman, D. Littman, W.L. Johnson, E. Soloway: Bug Catalogue: II, III, IV, TR 386, Department of Computer Science, Yale, 1985Google Scholar
  25. 25.
    K. VanLehn: Felicity Conditions for Human Skill Acquisition: Validating an AI-Based Theory. Doctoral Dissertation, MIT, Cambridge, Massachussets, 1983Google Scholar
  26. 26.
    K. VanLehn: Toward a Theory of Impasse-Driven Learning. Learning Issues for Intelligent Tutoring Systems, Mandl H.et Lesgold A. (Eds) pp 19–41, 1987Google Scholar
  27. 27.
    K. VanLehn: Two Pseudo-Students: Applications of Machine Learning to Formative Evaluation, International Conference on ARCE, Tokyo, July 18–20, pp 181–190, 1990Google Scholar
  28. 28.
    K. VanLehn, M.R. Jones, M.T.H. Chi: Modeling the Self-Explanation Effect With Cascade 3. K. Hammond & D. Gentner (Eds.), Thirteenth Annual Conference of the Cognitive Science Society, Lawrence Erlbaum Publishers, 1991Google Scholar
  29. 29.
    K. VanLehn, M.R. Jones, M.T.H. Chi: A Model of the Self-Explanation Effect, in press: Journal of the Learning Sciences, 1991Google Scholar
  30. 30.
    E. Wenger: AI and Tutoring Systems. Morgan Kaufmann, 1987Google Scholar
  31. 31.
    R. YoungT. O'Shea: Errors in Children's Substraction. Cognitive Science, vol 5, 1981Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Malika Talbi
    • 1
    • 2
  • Michelle Joab
    • 1
  1. 1.Laboratoire d'Informatique FondamentaleUniversité Pierre-et-Marie CurieParis VI
  2. 2.Laboratoire de Robotique et d'Intelligence ArtificielleCDTAAlger

Personalised recommendations