Using force fields derived from 3D distance maps for inferring the attitude of a 3D rigid object

  • Lionel Brunie
  • Stéphane Lavallée
  • Richard Szeliski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 588)


This paper presents a new method for evaluating the spatial attitude (position-orientation) of a 3D object by matching a 3D static model of this object with sensorial data describing the scene (2D projections or 3D sparse coordinates). This method is based on the pre-computation of a force field derived from 3D distance maps designed to attract any 3D point toward the surface of the model. The attitude of the object is infered by minimizing the energy necessary to bring all of the 3D points (or projection lines) in contact with the surface (geometric configuration of the scene). To quickly and accurately compute the 3D distance maps, a precomputed distance map is represented using an octree spline whose resolution increases near the surface.


Projection Line Iterative Minimization Match Line Signed Euclidean Distance Iterative Minimization Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Wackenheim. Perception, commentaire et interprétation de l'image par les intelligences naturelle et artificielle. Springer Verlag, 1987.Google Scholar
  2. 2.
    S. Lavallee and L. Szeliski, R. Brunie. Matching 3d smooth surfaces with their 2d projections using 3d distance maps. In SPIE Geometric methods in CV, San Diego, CA, July 1991.Google Scholar
  3. 3.
    G. Champleboux. Utilisation des fonctions splines a la mise au point d'un capteur tridimensionnel sans contact: application a la ponction assistee par ordinateur. PhD thesis, Grenoble University, July 1991.Google Scholar
  4. 4.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, England, 1986.Google Scholar
  5. 5.
    P. J. Huber. Robust Statistics. John Wiley & Sons, New York, New York, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Lionel Brunie
    • 1
  • Stéphane Lavallée
    • 1
  • Richard Szeliski
    • 2
  1. 1.Faculté de Médecine de GrenobleTIMC - IMAGLa TroncheFrance
  2. 2.Cambridge Research LabDigital Equipment CorporationCambridge

Personalised recommendations