Advertisement

Template guided visual inspection

  • A. Noble
  • V. D. Nguyen
  • C. Marinos
  • A. T. Tran
  • J. Farley
  • K. Hedengren
  • J. L. Mundy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 588)

Abstract

In this paper we describe progress toward the development of an X-ray image analysis system for industrial inspection. Here the goal is to check part dimensions and identify geometric flaws against known tolerance specifications. From an image analysis standpoint this poses challenges to devise robust methods to extract low level features; develop deformable parameterized templates; and perform statistical tolerancing tests for geometry verification. We illustrate aspects of our current system and how knowledge of expected object geometry is used to guide the interpretation of geometry from images.

Keywords

Inspection System Constraint Solver Geometric Entity Geometric Primitive Geometric Flaw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Burr, D.J.: A Dynamic Model for Image Registration, Computer Vision, Graphics, and Image Processing, 1981, 15,102–112.Google Scholar
  2. 2.
    Chen, C., Mulgaonkar, P.: CAD-Based Feature-Utility Measures For Automatic Vision Programming, Proc. IEEE Workshop Auto. CAD-Based Vision, Lahaina HI, June 1991,106.Google Scholar
  3. 3.
    Farouki, R.: The approximation of non-degenerate offset surfaces, Computer Aided Geometry Design, 1986, 3:1, 15–44.Google Scholar
  4. 4.
    Horn, B.K.P.: Robot Vision, McGraw-Hill, New York, 1986.Google Scholar
  5. 5.
    Huang. G: A robotic alignment and inspection system for semiconductor processing, Int. Conf. on Robot Vision and Sensory Control, Cambridge MA, 1983, 644–652.Google Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models, Int. J. of Computer Vision, 1988, 1:4, 321–331.Google Scholar
  7. 7.
    Lipson, P., et al.: Deformable Templates for Feature Extraction from Medical Images, Proc. Europ. Conf. on Computer Vision, Antibes France, April 1990, 413–417.Google Scholar
  8. 8.
    Medioni, G., Huertas, A.: Detection of Intensity Changes with Subpixel Accuracy using Laplacian-Gaussian Masks, IEEE PAMI, September 1986, 8:5,651–664.Google Scholar
  9. 9.
    Maragos, P., Schafer, R.W.: Morphological Systems for Multidimensional Signal Processing, Proc. of the IEEE, April 1990, 78:4, 690–710.Google Scholar
  10. 10.
    Nalwa, V.S.: Edge Detector Resolution Improvement by Image Interpolation, IEEE PAMI, May 1987, 9:3, 446–451.Google Scholar
  11. 11.
    Nelson, G.: Juno, a Constraint-Based Graphics System, ACM Computer Graphics, SIG-GRAPH '85, San Francisco CA, 1985, 19:3, 235–243.Google Scholar
  12. 12.
    Nguyen, V.,Mundy, J.L., Kapur, D.: Modeling Generic Polyhedral Objects with Constraints, Proc. IEEE Conf. Comput. Vis. & Patt. Recog., Lahaina HI, June 1991, 479–485.Google Scholar
  13. 13.
    Noble, J.A.: Finding Half Boundaries and Junctions in Images, Accepted Image and Vision Computing, (in press 1992).Google Scholar
  14. 14.
    Okamoto, K., et al.: An automatic visual inspection system for LSI photomasks, Proc. Int. Conf. on Pattern Recognition, Montreal Canada, 1984, 1361–1364.Google Scholar
  15. 15.
    Staib, L.H., Duncan, J.S.: Parametrically Deformable Contour Models, Proc. IEEE Conf. Comput. Vis. & Patt. Recog., San Diego CA, June 1989, 98–103.Google Scholar
  16. 16.
    West, A., Fernando, T., Dew, P.: CAD-Based Inspection: Using a Vision Cell Demonstrator. Proc. IEEE Workshop on Auto. CAD-Based Vision, Lahaina HI, June 1991, pp 155.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • A. Noble
    • 1
  • V. D. Nguyen
    • 1
  • C. Marinos
    • 1
  • A. T. Tran
    • 1
  • J. Farley
    • 1
  • K. Hedengren
    • 1
  • J. L. Mundy
    • 1
  1. 1.GE Corporate Research and Development CenterUSA

Personalised recommendations