Equality and disequality constraints on direct subterms in tree automata

  • Bogaert B. 
  • Tison S. 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 577)

Abstract

We define an extension of tree automata by adding some tests in the rules. The goal is to handle non linearity. We obtain a family which has good closure and decidability properties and we give some applications.

Keywords

Tree Automata non linearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Bog 90]
    B. Bogaert: ” Automates d'arbres avec tests d'égalités.”-PhD Thesis, Université de Lille I. (1990)Google Scholar
  2. [BoCoTi 91]
    B.Bogaert, H.Comon & S.Tison: ” Order-sorted calculi with term declarations.”-UNIF'91. (1991) Google Scholar
  3. [BoTi 91]
    B.Bogaert, S.Tison: ” Minimization of tree automata with tests”-LIFL Report (to appear) (1991) Google Scholar
  4. [Com 88]
    H. Comon: ” Unification et Disunification. Théorie et applications.”-PhD Thesis, INPG (Grenoble) (1988)Google Scholar
  5. [Com 89]
    H. Comon: ” Inductive proofs by specification transformations.”-Proc. Rewriting technics and applications, Chapel-Hill, LNCS 375 (1989)Google Scholar
  6. [CoDe 91]
    H. Comon & C. Delor: ” Equational formulae with membership constraints.”-Technical report, LRI Paris-Sud Orsay (1991)Google Scholar
  7. [Cou 89]
    B. Courcelle: ” On recognizable sets and tree automata. Resolutions of equations in algebraic structures.”-Academic Press, Ait-Kaci & M.Nivat ed. (1989)Google Scholar
  8. [DaTi 90]
    M. Dauchet & S. Tison: ” Réduction de la non-linéarité des morphismes d'arbres.”-Rapport IT 196, LIFL, Université de Lille (1990)Google Scholar
  9. [JoKo 86]
    J.P. Jouannaud & B. Kounalis: ” Automatic proofs by induction in equationnal theory without constructors.”-Proc. 1st IEEE symp. Logic in Computer Science, Cambridge, Mass. (1986) Google Scholar
  10. [GéSt 84]
    F. Gécseg & M. Steinby: ” Tree automata.”-Akadémiai Kiadó, Budapest (1984)Google Scholar
  11. [KaNaZh 85]
    D. Kapur, P. Narendran, H. Zhang: ”On sufficient completeness and related properties of term rewriting systems.”-Research Report TR 87-26, Computer science department, State University of New-York at Albany (1985)Google Scholar
  12. [Kou 90]
    E. Kounalis: ” Testing for inductive (co-)reductibility.”-Proc CAAP 90 (1990)Google Scholar
  13. [Mah 88]
    M.J. Maher: ” Complete axiomatizations of the algebras of finite, rationnal and infinite trees.”-Proc 3rd IEEE Symp. Logic in Computer Sc. (1988)Google Scholar
  14. [Mon 81]
    J.Mongy: ” Transformations de noyaux reconnaissables d'arbres. ForÊts RATEG.”-PhD Thesis, Université de Lille I (1981)Google Scholar
  15. [Oya 87]
    M. Oyamagushi: ” The Church-Roser property for ground term rewriting systems is decidable.”-TCS 49, pp 43–79 (1987)Google Scholar
  16. [Oya 90]
    M. Oyamagushi: ” The reachability and joinability problems for right-ground term rewriting systems.”-J. Inf. Process (to appear) Google Scholar
  17. [Tha 73]
    J.W. Thatcher: ” Tree automata: an informal survey.”-Currents in the theory of computing. A.V. Aho ed. Prentice Hall (1973)Google Scholar
  18. [Sch 88]
    M. Schmidt-Schauss: ” Computational aspects of an order-sorted logic with term declarations”-PhD Thesis, Univ. Kaiserlautern (1988)Google Scholar
  19. [Tis 90]
    S. Tison: ” Automates comme outils de décision.”-Mémoire d'Habilitation-Université de Lille (1990)Google Scholar
  20. [Tom 91]
    M. Tommasi: ” Automates avec tests d'égalités entre cousins germains”-LIFL IT-report (to appear) (1991)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Bogaert B. 
    • 1
    • 2
  • Tison S. 
    • 1
    • 2
  1. 1.LIFL (U.A. 369 CNRS)University of Lille Flandres-ArtoisVilleneuve d'Ascq cedexFrance
  2. 2.UFR IEEAVilleneuve d'Ascq cedexFrance

Personalised recommendations