Model-theoretic aspects of unification

  • Alexander Bockmayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 572)

Abstract

Unification is a fundamental operation in various areas of computer science, in particular in automated theorem proving and logic programming. In this paper we establish a relation between unification theory and classical model theory. We show how model-theoretic methods can be used to investigate a generalized form of unification, namely the problem whether, given an equational theory E and a system of equations S, there is an extension of the free algebra in E in which S is solvable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Boc87]
    A. Bockmayr. A note on a canonical theory with undecidable unification and matching problem. Journal of Automated Reasoning, 3:379–381, 1987.Google Scholar
  2. [Bur89]
    S. Burris. Decidable model companions. Zeitschr. f. math. Logik und Grundlagen d. Math., 35:225–227, 1989.Google Scholar
  3. [Che73]
    G. Cherlin. Algebraically closed commutative rings. Journal of Symbolic Logic, 38:493–499, 1973.Google Scholar
  4. [Che76]
    G. Cherlin. Model-Theoretic Algebra — Selected Topics, volume 521 of Lecture Notes in Mathematics. Springer-Verlag, 1976.Google Scholar
  5. [DMR76]
    M. Davis, Y. Matiyasevich, and J. Robinson. Hilbert's tenth problem. Diophantine equations: Positive aspects of a negative solution. Proc. Symp. Pure Math., 28:323–378, 1976.Google Scholar
  6. [Dör51]
    K. Dörge. Bemerkungen über Elimination in beliebigen Mengen mit Operationen. Mathematische Nachrichten, 4:282–297, 1951.Google Scholar
  7. [Dör67]
    K. Dörge. Über die Lösbarkeit allgemeiner algebraischer Gleichungssysteme und einige weitere Fragen. Mathematische Annalen, 171:1–21, 1967.Google Scholar
  8. [ES71]
    P. Eklof and G. Sabbagh. Model completions and modules. Ann. Math. Logic, 2:251–295, 1971.Google Scholar
  9. [HO80]
    G Huet and D. C. Oppen. Equations and rewrite rules, A survey. In R. V. Book, editor, Formal Language Theory. Academic Press, 1980.Google Scholar
  10. [Hue81]
    G. Huet. A complete proof of the Knuth-Bendix completion procedure. J. Comp. Syst. Sc., 23:11–21, 1981.Google Scholar
  11. [HW75]
    J. Hirschfeld and W. H. Wheeler. Forcing, Arithmetic, Division Rings, volume 454 of Lecture Notes in Mathematics. Springer-Verlag, 1975.Google Scholar
  12. [JK89]
    J. P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without constructors. Inform. and Comput., 82:1–33, 1989.Google Scholar
  13. [JK91]
    J. P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey of unification. In J.L. Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of A. Robinson. MIT Press, 1991.Google Scholar
  14. [Kei77]
    H. J. Keisler. Fundamentals of model theory. In J. Barwise, editor, Handbook of Mathematical Logic. North Holland, 1977.Google Scholar
  15. [Kni89]
    K. Knight. Unification, a multidisciplinary survey. ACM Comp. Surveys, 21:93–124, 1989.Google Scholar
  16. [Mac72]
    A. Macintyre. On algebraically closed groups. Annals of Math., 96:53–97, 1972.Google Scholar
  17. [Mac77]
    A. Macintyre. Model completeness. In J. Barwise, editor, Handbook of Mathematical Logic. North Holland, 1977.Google Scholar
  18. [Par83]
    M. Parigot. Le modèle compagnon de la théorie des arbres. Zeitschr. f. math. Logik und Grundlagen d. Math., 29:137–150, 1983.Google Scholar
  19. [Pla85]
    D. Plaisted. Semantic confluence tests and completion methods. Information and Control, 65:233–264, 1985.Google Scholar
  20. [Rob51]
    A. Robinson. On the Metamathematics of Algebra. North Holland, 1951.Google Scholar
  21. [Rob63]
    A. Robinson. Introduction to Model Theory and to the Metamathematics of Algebra. North Holland, 1963.Google Scholar
  22. [Sch83]
    P. H. Schmitt. Algebraically complete lattices. Algebra Universalis, 17:135–142, 1983.Google Scholar
  23. [Sie89]
    J. H. Siekmann. Unification theory. Journal of Symbolic Computation, 7:207–274, 1989.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Alexander Bockmayr
    • 1
  1. 1.Max-Planck-Institut für Informatik Im StadtwaldSaarbrücken

Personalised recommendations